Articles | Volume 31, issue 10
https://doi.org/10.5194/angeo-31-1619-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-31-1619-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves
E. E. Woodfield
British Antarctic Survey, Cambridge, UK
R. B. Horne
British Antarctic Survey, Cambridge, UK
S. A. Glauert
British Antarctic Survey, Cambridge, UK
J. D. Menietti
Department of Physics and Astronomy, University of Iowa, USA
Y. Y. Shprits
Skolkovo Institute of Science and Technology, Moscow, Russian Federation
Massachusetts Institute of Technology, Cambridge, MA, USA
University of California, Los Angeles, CA, USA
Related authors
B. J. Jackel, C. Unick, M. T. Syrjäsuo, N. Partamies, J. A. Wild, E. E. Woodfield, I. McWhirter, E. Kendall, and E. Spanswick
Geosci. Instrum. Method. Data Syst., 3, 71–94, https://doi.org/10.5194/gi-3-71-2014, https://doi.org/10.5194/gi-3-71-2014, 2014
Geng Wang, Mingyu Wu, Guoqiang Wang, Sudong Xiao, Irina Zhelavskaya, Yuri Shprits, Yuanqiang Chen, Zhengyang Zou, Zhonglei Gao, Wen Yi, and Tielong Zhang
Ann. Geophys., 39, 613–625, https://doi.org/10.5194/angeo-39-613-2021, https://doi.org/10.5194/angeo-39-613-2021, 2021
Short summary
Short summary
We investigate the reflection of magnetosonic (MS) waves at the local two-ion cutoff frequency in the outer plasmasphere, which is rarely reported. The observed wave signals demonstrate the reflection at the local two-ion cutoff frequency. From simulations, the waves with small incident angles are more likely to penetrate the thin layer where the group velocity reduces significantly before reflection. These results may help to predict the global distribution of MS waves.
This article is included in the Encyclopedia of Geosciences
G. Fischer, S.-Y. Ye, J. B. Groene, A. P. Ingersoll, K. M. Sayanagi, J. D. Menietti, W. S. Kurth, and D. A. Gurnett
Ann. Geophys., 32, 1463–1476, https://doi.org/10.5194/angeo-32-1463-2014, https://doi.org/10.5194/angeo-32-1463-2014, 2014
Short summary
Short summary
In this paper we show that the large thunderstorm called the "Great White Spot", which raged for about 9 months in Saturn's troposphere in 2010/2011, was accompanied by changes in the periodicity and phasing of auroral radio emissions. We suggest that the thunderstorm was a source of intense gravity waves causing a global change in Saturn’s ionospheric winds via energy and momentum deposition. This supports the theory that Saturn’s magnetospheric periodicities are driven by the upper atmosphere.
This article is included in the Encyclopedia of Geosciences
A. Sicard-Piet, D. Boscher, R. B. Horne, N. P. Meredith, and V. Maget
Ann. Geophys., 32, 1059–1071, https://doi.org/10.5194/angeo-32-1059-2014, https://doi.org/10.5194/angeo-32-1059-2014, 2014
B. J. Jackel, C. Unick, M. T. Syrjäsuo, N. Partamies, J. A. Wild, E. E. Woodfield, I. McWhirter, E. Kendall, and E. Spanswick
Geosci. Instrum. Method. Data Syst., 3, 71–94, https://doi.org/10.5194/gi-3-71-2014, https://doi.org/10.5194/gi-3-71-2014, 2014
I. P. Pakhotin, S. N. Walker, Y. Y. Shprits, and M. A. Balikhin
Ann. Geophys., 31, 1437–1446, https://doi.org/10.5194/angeo-31-1437-2013, https://doi.org/10.5194/angeo-31-1437-2013, 2013