Articles | Volume 31, issue 7
https://doi.org/10.5194/angeo-31-1241-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-31-1241-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reconstruction of F2 layer peak electron density based on operational vertical total electron content maps
T. Gerzen
German Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, Germany
N. Jakowski
German Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, Germany
V. Wilken
German Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, Germany
M. M. Hoque
German Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, Germany
Related authors
Tatjana Gerzen, David Minkwitz, Michael Schmidt, and Eren Erdogan
Ann. Geophys., 38, 1171–1189, https://doi.org/10.5194/angeo-38-1171-2020, https://doi.org/10.5194/angeo-38-1171-2020, 2020
Short summary
Short summary
We focus on reconstructing the topside ionosphere and plasmasphere and assimilating the space-based Global Navigation Satellite System slant total electron content (STEC) measurements with an ensemble Kalman filter (EnKF). We present methods for realizing the propagation step without a physical model. We investigate the capability of our estimations to reconstruct independent STEC and electron density measurements. We compare the EnKF approach with SMART+ and the 3D ionosphere model NeQuick.
Tatjana Gerzen, Volker Wilken, David Minkwitz, Mainul M. Hoque, and Stefan Schlüter
Ann. Geophys., 35, 203–215, https://doi.org/10.5194/angeo-35-203-2017, https://doi.org/10.5194/angeo-35-203-2017, 2017
David Minkwitz, Karl Gerald van den Boogaart, Tatjana Gerzen, Mainul Hoque, and Manuel Hernández-Pajares
Ann. Geophys., 34, 999–1010, https://doi.org/10.5194/angeo-34-999-2016, https://doi.org/10.5194/angeo-34-999-2016, 2016
Short summary
Short summary
We extend the kriging of the ionospheric electron density with slant total electron content (STEC) measurements based on a spatial covariance to kriging with a spatial–temporal covariance and develop a novel tomography approach by gradient-enhanced kriging assimilating STEC and F2 layer characteristics. The methods are cross-validated with independent measurements and point out the potential compensation for the often observed bias in the estimation of the F2 layer peak height.
T. Gerzen and D. Minkwitz
Ann. Geophys., 34, 97–115, https://doi.org/10.5194/angeo-34-97-2016, https://doi.org/10.5194/angeo-34-97-2016, 2016
Short summary
Short summary
The accuracy and availability of satellite-based applications like GNSS positioning and remote sensing crucially depends on the knowledge of the ionospheric electron density distribution. The 3-D reconstruction of the ionosphere is one of the major tools to provide ionospheric corrections and to study physical processes in the ionosphere. In this paper, we introduce two reconstruction methods SMART and SMART+, and compare them to well-known reconstruction techniques ART and SART.
D. Minkwitz, K. G. van den Boogaart, T. Gerzen, and M. Hoque
Ann. Geophys., 33, 1071–1079, https://doi.org/10.5194/angeo-33-1071-2015, https://doi.org/10.5194/angeo-33-1071-2015, 2015
Tatjana Gerzen, David Minkwitz, Michael Schmidt, and Eren Erdogan
Ann. Geophys., 38, 1171–1189, https://doi.org/10.5194/angeo-38-1171-2020, https://doi.org/10.5194/angeo-38-1171-2020, 2020
Short summary
Short summary
We focus on reconstructing the topside ionosphere and plasmasphere and assimilating the space-based Global Navigation Satellite System slant total electron content (STEC) measurements with an ensemble Kalman filter (EnKF). We present methods for realizing the propagation step without a physical model. We investigate the capability of our estimations to reconstruct independent STEC and electron density measurements. We compare the EnKF approach with SMART+ and the 3D ionosphere model NeQuick.
Erik Schmölter, Jens Berdermann, Norbert Jakowski, and Christoph Jacobi
Ann. Geophys., 38, 149–162, https://doi.org/10.5194/angeo-38-149-2020, https://doi.org/10.5194/angeo-38-149-2020, 2020
Short summary
Short summary
This study correlates ionospheric parameters with the integrated solar radiation for an analysis of the delayed ionospheric response in order to confirm previous studies on the delay and to further specify variations of the delay (seasonal and spatial). Results also indicate the dependence on the geomagnetic activity as well as on the 11-year solar cycle. The results are important for the understanding of ionospheric processes and could be used for the validation of ionospheric models.
Erik Schmölter, Jens Berdermann, Norbert Jakowski, Christoph Jacobi, and Rajesh Vaishnav
Adv. Radio Sci., 16, 149–155, https://doi.org/10.5194/ars-16-149-2018, https://doi.org/10.5194/ars-16-149-2018, 2018
Short summary
Short summary
Physical and chemical processes in the ionosphere are driven by complex interactions with the solar radiation. The ionospheric plasma is in particular sensitive to solar variations with a time delay between one and two days.
Here we present preliminary results of the ionospheric delay based on a comprehensive and reliable database consisting of GNSS TEC Maps and EUV spectral flux data.
Tatjana Gerzen, Volker Wilken, David Minkwitz, Mainul M. Hoque, and Stefan Schlüter
Ann. Geophys., 35, 203–215, https://doi.org/10.5194/angeo-35-203-2017, https://doi.org/10.5194/angeo-35-203-2017, 2017
Martin Kriegel, Norbert Jakowski, Jens Berdermann, Hiroatsu Sato, and Mogese Wassaie Mersha
Ann. Geophys., 35, 97–106, https://doi.org/10.5194/angeo-35-97-2017, https://doi.org/10.5194/angeo-35-97-2017, 2017
David Minkwitz, Karl Gerald van den Boogaart, Tatjana Gerzen, Mainul Hoque, and Manuel Hernández-Pajares
Ann. Geophys., 34, 999–1010, https://doi.org/10.5194/angeo-34-999-2016, https://doi.org/10.5194/angeo-34-999-2016, 2016
Short summary
Short summary
We extend the kriging of the ionospheric electron density with slant total electron content (STEC) measurements based on a spatial covariance to kriging with a spatial–temporal covariance and develop a novel tomography approach by gradient-enhanced kriging assimilating STEC and F2 layer characteristics. The methods are cross-validated with independent measurements and point out the potential compensation for the often observed bias in the estimation of the F2 layer peak height.
Christoph Jacobi, Norbert Jakowski, Gerhard Schmidtke, and Thomas N. Woods
Adv. Radio Sci., 14, 175–180, https://doi.org/10.5194/ars-14-175-2016, https://doi.org/10.5194/ars-14-175-2016, 2016
Short summary
Short summary
The ionospheric response to solar extreme ultraviolet variability is shown by simple proxies based on Solar Dynamics Observatory/Extreme Ultraviolet Variability Experiment solar spectra. The daily proxies are compared with global mean total electron content. At time scales of the solar rotation up to about 40 days there is a time lag between EUV and TEC variability of about one day, with a tendency to increase for longer time scales.
T. Gerzen and D. Minkwitz
Ann. Geophys., 34, 97–115, https://doi.org/10.5194/angeo-34-97-2016, https://doi.org/10.5194/angeo-34-97-2016, 2016
Short summary
Short summary
The accuracy and availability of satellite-based applications like GNSS positioning and remote sensing crucially depends on the knowledge of the ionospheric electron density distribution. The 3-D reconstruction of the ionosphere is one of the major tools to provide ionospheric corrections and to study physical processes in the ionosphere. In this paper, we introduce two reconstruction methods SMART and SMART+, and compare them to well-known reconstruction techniques ART and SART.
D. Minkwitz, K. G. van den Boogaart, T. Gerzen, and M. Hoque
Ann. Geophys., 33, 1071–1079, https://doi.org/10.5194/angeo-33-1071-2015, https://doi.org/10.5194/angeo-33-1071-2015, 2015