On impulse excitation of the global poloidal modes in the magnetosphere
Abstract. Through the combined action of the field line curvature and finite plasma pressure in some regions of the magnetosphere (plasmapause, ring current) there can exist global poloidal Alfvén modes standing both along field lines and across magnetic shells and propagating along azimuth. In this paper we investigate the spatio-temporal structure of such waves generated by an impulsive source. In general, the mode is the sum of radial harmonics whose structure is described by Hermitian polynomials. For the usually observed second harmonic structure along the background field, frequencies of these radial harmonics are very close to each other; therefore, the generated wave is almost a monochromatic oscillation. But mixing of the harmonics with different radial structure causes the evolution of the initially poloidal wave into the toroidal one. This casts some doubts upon the interpretation of observed high-m poloidal waves as global poloidal modes.