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Abstract. Through the combined action of the field line
curvature and finite plasma pressure in some regions of the
magnetosphere (plasmapause, ring current) there can exist
global poloidal Alfv́en modes standing both along field lines
and across magnetic shells and propagating along azimuth.
In this paper we investigate the spatio-temporal structure of
such waves generated by an impulsive source. In general, the
mode is the sum of radial harmonics whose structure is de-
scribed by Hermitian polynomials. For the usually observed
second harmonic structure along the background field, fre-
quencies of these radial harmonics are very close to each
other; therefore, the generated wave is almost a monochro-
matic oscillation. But mixing of the harmonics with different
radial structure causes the evolution of the initially poloidal
wave into the toroidal one. This casts some doubts upon the
interpretation of observed high-m poloidal waves as global
poloidal modes.

Keywords. Magnetospheric physics (MHD waves and in-
stabilities; Plasmasphere) – Space plasma physics (Kinetic
and MHD theory)

1 Introduction

The wide variety of Alfv́en waves in the Earth’s magne-
tosphere includes frequently recorded poloidally polarized
oscillations (the magnetic field vector oscillates radially).
These waves have large values of the azimuthal wave num-
berm�1, and they are usually second longitudinal harmonic
standing waves (that is, a second harmonic structure along
the background field), being often narrowly localized across
magnetic shells (Cramm et al., 2000; Takahashi and Ander-
son, 1992; Yeoman et al., 2000). These oscillations are often
interpreted in terms of global poloidal modes (Leonovich and
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Mazur, 1995; Vetoulis and Chen, 1996; Denton and Vetoulis,
1998; Klimushkin, 1998; Mager and Klimushkin, 2002;
Denton et al., 2003; Klimushkin at al., 2004). These modes
represent waveguides, where the wave energy is trapped be-
tween the conjugate ionospheres and the cut off shells, and is
channelled along azimuth. They can exist near the plasma-
pause and in ring current regions inside and outside of the
plasmasphere, where the poloidal frequency�PN as a func-
tion of coordinate across magnetic shells (x1) has extreme
values (Fig. 1). The global poloidal modes have discrete
spectrum (even in the ideal MHD), due to the field line cur-
vature and finite plasma pressure.

It is widely accepted that poloidal waves have an energy
source in energetic particles (e.g. Ozeke and Mann, 2001).
However, corresponding kinetic instabilities are the amplifi-
cation mechanism of the waves rather than their source. In
order for this mechanism to work, it is necessary to have
some “embryos” of the oscillations. Since the ULF waves
are not permanent features of the magnetosphere, this trig-
gering amplitude must be a transient process. Thus, the study
of nonstationary Alfv́en waves is of interest. A number of
publications (e.g. Tataronis and Grossman, 1973; Mann and
Wright, 1995; Leonovich and Mazur, 1998) have addressed
the problem of the evolution of the Alfvén wave field from
an initial poloidally polarized packet in magnetospheric re-
gions with a monotonic dependence of magnetospheric pa-
rameters on the transverse coordinate. It was shown, in par-
ticular, that although at the initial instant of time all field lines
oscillate with the same phase, the oscillations on neighbor-
ing magnetic shells rapidly acquire a significant phase differ-
ence, because each field line oscillates with its own eigen-
frequency (phase mixing phenomenon). As a consequence,
the wave becomes strongly “indented” in radial coordinate
and, hence, toroidally polarized. The reason for the phase
mixing is the continuous spectrum Alfvén waves: for every
given frequencyω we can find an L-shell with the Alfv́en
eigenfrequency being equal toω.
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Abstract. Through the combined action of the field line
curvature and finite plasma pressure in some regions of the
magnetosphere (plasmapause, ring current) there can exist
global poloidal Alfv́en modes standing both along field lines
and across magnetic shells and propagating along azimuth.
In this paper we investigate the spatio-temporal structure of
such waves generated by an impulsive source. In general the
mode is the sum of radial harmonics whose structure is de-
scribed by Hermitian polynomials. For the usually observed
second harmonic structure along the background field, fre-
quencies of these radial harmonics are very close to each
other, therefore the generated wave is almost a monochro-
matic oscillation. But mixing of the harmonics with different
radial structure causes the evolution of the initially poloidal
wave into the toroidal one. This casts some doubts upon the
interpretation of observed high-m poloidal waves as global
poloidal modes.

Introduction

The wide variety of Alfv́en waves in the Earth’s magne-
tosphere includes frequently recorded poloidally polarized
oscillations (the magnetic field vector oscillates radially).
These waves have large values of the azimuthal wave num-
berm � 1, they are usually second longitudinal harmonic
standing waves (that is, a second harmonic structure along
the background field) being often narrowly localized across
magnetic shells (Cramm et al., 2000; Takahashi and Ander-
son, 1992; Yeoman et al., 2000). These oscillations are often
interpreted in terms of global poloidal modes (Leonovich and
Mazur, 1995; Vetoulis and Chen, 1996; Denton and Vetoulis,
1998; Klimushkin, 1998; Mager and Klimushkin, 2002;
Denton et al., 2003; Klimushkin at al., 2004). These modes
represent waveguides, where the wave energy is trapped be-
tween the conjugate ionospheres and cut-off shells, and is
channelled along azimuth. They can exist near the plasma-
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pause and in ring current regions inside and outside of the
plasmasphere, where the poloidal frequencyΩPN as a func-
tion of coordinate across magnetic shells (x1) has extreme
values (Fig. 1). The global poloidal modes have discrete
spectrum (even in the ideal MHD) due to the field line cur-
vature and finite plasma pressure.

Fig. 1. Dependence of the toroidalΩTN and poloidalΩPN frequen-
cies on the transverse coordinatex1 in the region of the waveguide
on the plasmapause (a) and near the ring current (b).

It is widely accepted that poloidal waves have an energy
source in energetic particles (e.g., Ozeke and Mann, 2001).
However, corresponding kinetic instabilities are the amplifi-
cation mechanism of the waves rather than their source. In
order for this mechanism to work, it is necessary to have
some ”embryos” of the oscillations. Since the ULF waves
are not permanent features of the magnetosphere, this trig-
gering amplitude must be a transient process. Thus, the study
of nonstationary Alfv́en waves is of interest. A number of
publications (e.g., Tataronis and Grossman, 1973; Mann and
Wright, 1995; Leonovich and Mazur, 1998) addressed the
problem of the evolution of the Alfv́en wave field from an
initial poloidally polarized packet in magnetospheric regions
with a monotonic dependence of magnetospheric parame-
ters on the transverse coordinate. It was shown, in partic-

Fig. 1. Dependence of the toroidal�T N and poloidal�PN fre-
quencies on the transverse coordinatex1 in the region of the waveg-
uide on the plasmapause(a) and near the ring current(b).

The prime objective of the present paper is the study of
the temporal evolution of the global poloidal modes with a
discrete spectrum. We are going to elucidate on whether the
impulse-excited global poloidal modes remain poloidal for-
ever, or whether they are also transformed into toroidally po-
larized waves. In the latter case, some doubts are cast upon
the interpretation of the observed poloidal waves as global
poloidal modes.

We study the impulsive excitation of poloidally polarized
global Alfvén poloidal modes by a source whose operation
time is much less than the characteristic period of these os-
cillations and whose characteristics change little across mag-
netic shells in the region of their localization. Our analy-
sis is based on the theory of Alfvén eigenoscillations of the
axisymmetric magnetosphere in which the field line curva-
ture, the plasma nonuniformity along and across the mag-
netic field, and finite plasma pressure are taken into account
(Leonovich and Mazur, 1995; Klimushkin at al., 2004).

2 Transverse structure

We now summarize the main results from the theory of
monochromatic poloidal standing oscillations across mag-
netic shells in the axisymmetric magnetosphere (Leonovich
and Mazur, 1995; Klimushkin et al., 2004). Let us designate
the radial coordinatex1, thenξ is its dimensionless form (as
specified below). As is shown in the cited references, the
equation describing the transverse structure of Alfvén waves
in the waveguide is of the form

d2RN

dξ2
+ (σ − ξ2)RN = qN . (1)

Here RN (x1) describes the radial structure of the mode,
where it is proportional to the wave electric field azimuthal
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given frequencyω we can find an L-shell with the Alfv́en
eigenfrequency being equal toω.

The prime objective of the present paper is study of the
temporal evolution of the global poloidal modes with a dis-
crete spectrum. We are going to elucidate whether the
impulse-excited global poloidal modes remain poloidal for-
ever, or whether they are also transformed into toroidally po-
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ture, the plasma nonuniformity along and across the mag-
netic field, and finite plasma pressure are taken into account
(Leonovich and Mazur, 1995; Klimushkin at al., 2004).

Transverse structure

We now summarize the main results from the theory of
monochromatic poloidal standing oscillations across mag-
netic shells in the axisymmetric magnetosphere (Leonovich
and Mazur, 1995; Klimushkin et al., 2004). Let us designate
the radial coordinatex1, thenξ is its dimensionless form (as
specified below). As is shown in the cited references, the
equation describing the transverse structure of Alfvén waves
in the waveguide is of the form

d2RN

dξ2
+ (σ − ξ2)RN = qN . (1)

HereRN (x1) describes the radial structure of the mode, it is
proportional to the wave electric field azimuthal component;
N is longitudinal harmonic number (usually observedN =
2). We also have introduced the designations:
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;

ξ = (x1−L0)/λRN ; N is the longitudinal harmonic number;
qN is the function that specifies the oscillation source;Ω0 and

L0 are the value of the extremum of the functionΩPN (x1)
and its position, respectively:
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(
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l
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]
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ΩTN is the toroidal eigenfrequency that bounds the value of
the wave frequency in the waveguide (see Fig. 1); andω is
the wave frequency.

If qN = 0, this equation is of the same form as is the
Schr̈odinger equation for a harmonic oscillator. As is well
known, there exists its solution bounded outside of the re-
gion of mode localization. This requires that the parameter
σ be quantized,σ = 2n + 1, wheren = 0, 1, 2, ... is an
integer. From this we have the wave frequency quantization
condition:

ω = ωNn, ω2
Nn ≡ Ω2

0 ∓ Ω2
0

λ2
RN

l2
(2n + 1). (3)

Here the ”−” sign refers to the case where the waveguide is
localized near the maximum of the functionΩPN (x1), and
the ”+” sign refers to opposite case. Thus the oscillation has
a discrete spectrum, as pointed out above. The difference be-
tween the eigenfrequenciesωNn depends on the difference
between poloidal and toroidal frequencies∆Ω = ΩPN −
ΩTN in the waveguide region: the higher is∆Ω, the higher
the difference between the eigenfrequencies is. For the fun-
damental longitudinal harmonic (N = 1) this difference can
be rather large, while for the more often observed second
harmonic (N = 2) it is very small, ∆Ω � ΩPN ,ΩTN

(Klimushkin et al., 2004), soλ2
R2/l2 � 1. The spectrum

must be very dense in this case.

Fig. 2. Structure of the wave across magnetic shells in the Alfvén
waveguide.

WhenqN = 0, the solution to equation (1) is expressed in
terms of Hermitian polynomialsHn:

RNn = const · π−1/42−n/2(n!)−1/2Hn(ξ) e−ξ2/2.

This solution describes the transverse structure of then-th
harmonic of the waveguide (Fig. 2). In particular, the funda-
mental radial harmonic (n = 0) is described by the Gaussian

Fig. 2. Structure of the wave across magnetic shells in the Alfvén
waveguide.

component;N is the longitudinal harmonic number (usually
observedN=2). We also have introduced the designations:

σ =
l2

λ2
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;
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−L0)/λRN ; N is the longitudinal harmonic num-

ber; qN is the function that specifies the oscillation source;
�0 andL0 are the values of the extremum of the function
�PN (x1) and its position, respectively:
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�T N is the toroidal eigenfrequency that bounds the value of
the wave frequency in the waveguide (see Fig. 1); andω is
the wave frequency.

If qN=0, this equation is of the same form as is the
Schr̈odinger equation for a harmonic oscillator. As is well
known, there exists its solution bounded outside of the re-
gion of mode localization. This requires that the parameter
σ be quantized,σ=2n+1, wheren=0, 1, 2, . . . is an integer.
From this we have the wave frequency quantization condi-
tion:

ω = ωNn, ω2
Nn ≡ �2

0 ∓ �2
0
λ2

RN

l2
(2n + 1). (3)

Here the “−” sign refers to the case where the waveguide is
localized near the maximum of the function�PN (x1), and
the “+” sign refers to opposite case. Thus, the oscillation
has a discrete spectrum, as pointed out above. The difference
between the eigenfrequenciesωNn depends on the difference
between poloidal and toroidal frequencies1�=�PN−�T N

in the waveguide region: the higher1�, the higher the dif-
ference between the eigenfrequencies. For the fundamen-
tal longitudinal harmonic (N=1) this difference can be rather
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function. If the source functionqN 6= 0, then the structure of
the wave is defined by the expression

RN =
∞∑

n=0

cn

ω2 − ω2
Nn

RNn(ξ), (4)

where

cn =

∞∫
−∞

RNn(ξ)qN dξ (5)

(Leonovich and Mazur, 1995). Thus, with the nonzero right-
hand side, the equation of oscillations has the solution for
any frequency, although the amplitude of the wave field is
still maximal whenω ' ωn.

Next, based on the solution (4), we shall study the evolu-
tion of the Alfvén wave excited by the impulsive source.

Excitation of Alfv én oscillations in the waveguide by the
impulsive source

In order to determine how the wave field will change with the
time, we Fourier-transform the solution (4):

RN (x1, t) =
1√
2π

∞∫
−∞

RN (x1, ω)e−iωtdω. (6)

It is assumed that the source functionqN is independent of
x1. This approximation corresponds to the fact that the width
of the waveguide is much less than the characteristic scale of
variation of the source characteristics across magnetic shells.
It is further assumed thatqN is independent ofω, which ap-
proximately corresponds to the fact that the operation time of
the source is much less than the characteristic period of the
oscillations under investigation, i.e. the source is an impul-
sive one. In the case under study, whenqN (x1, ω) = const,
the source is described by aδ-function of time:

1√
2π

∞∫
−∞

qNe−iωtdω =
√

2πqNδ(t).

As a result, from (6) we find that

RN (x1, t) = 2
∞∑

j=0

cj

ωN2j
sin(ωN2jt)RN2j(x1), (7)

where

cj = qNπ−1/42−j

√
(2j)!
j!

√
2π.

Here we have substituted the summation indexn for j (j =
0, 1, ..), because the terms of the series withn = 2j + 1
are zero, i.e. only evenn-harmonics of the waveguide are
excited.

For the fundamental longitudinal harmonic (N = 1), the
difference between the waveguide eigenfrequenciesωNn is
rather large, since in this caseλ2

R1/l2 ∼ 1. Thus, as can be

Fig. 3. Time-dependence of the wave field in the waveguide. Here
t is time after the impulse.

Fig. 4. Structure of the wave field across magnetic shells: a) for
t = 1000s (10 periods approximately) after the impulse, b) for
t = 10000s (∼ 100 periods) after the impulse.

seen from the Eq. (7), the amplitude of the radial harmonic
with n = 0 is considerably larger than the amplitudes of
the higher radial harmonics. Consequently, the excited wave
will have the frequencyω ≈ ωN0 and its radial structure will
be close to the Gaussian function. On the contrary, for the
most often observed second longitudinal harmonic (N = 2),
the difference between radial eigenfrequenciesωNn is very
small, sinceλ2

R2/l2 � 1 in this case, that also leads to the
small difference of the different terms in Eq. (7).

In order to study the temporal and spatial evolution of the
wave, we performed a numerical summation of the series (7)
with the parametersλ2

R2/l2 = 3·10−4, Ω0 = 6.28·10−2s−1;
the waveguide near the minimum the the poloidal frequency
was considered (see Fig. 1b), so the the sign ”+” was chosen
in Eqs. (2, 3). The numerical summation shows that the ex-
cited wave is almost monochoromatic (Fig.3), as in the case
N = 1, but the radial structure is time-dependent: the radial
wavelength is decreasing with time (Fig.4). The reason for
this analogy of the phase mixing is the great impact on the
wave structure of the higher radial harmonics (n > 1). The
ratio of the radial componentB1 of the Alfvén wave mag-
netic field to the azimuthal componentB2 is defined as

B1

B2
≈ mL−1RN

∂RN/∂x1
.

The wave is poloidally polarized ifB1/B2 � 1, and it is
toroidally polarized ifB1/B2 � 1. Accordingly, the wave
polarization changes from poloidal to toroidal.

Fig. 3. Time-dependence of the wave field in the waveguide. Here
t is time after the impulse.
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2004), soλ2
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2
�1. The spectrum must be very dense in
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where
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RNn(ξ)qN dξ (5)

(Leonovich and Mazur, 1995). Thus, with the nonzero right-
hand side, the equation of oscillations has the solution for
any frequency, although the amplitude of the wave field is
still maximal whenω'ωn.

Next, based on the solution Eq. (4), we shall study the evo-
lution of the Alfvén wave excited by the impulsive source.
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the impulsive source

In order to determine how the wave field will change with the
time, we Fourier-transform the solution Eq. (4):
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It is assumed that the source functionqN is independent of
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seen from the Eq. (7), the amplitude of the radial harmonic
with n = 0 is considerably larger than the amplitudes of
the higher radial harmonics. Consequently, the excited wave
will have the frequencyω ≈ ωN0 and its radial structure will
be close to the Gaussian function. On the contrary, for the
most often observed second longitudinal harmonic (N = 2),
the difference between radial eigenfrequenciesωNn is very
small, sinceλ2

R2/l2 � 1 in this case, that also leads to the
small difference of the different terms in Eq. (7).

In order to study the temporal and spatial evolution of the
wave, we performed a numerical summation of the series (7)
with the parametersλ2

R2/l2 = 3·10−4, Ω0 = 6.28·10−2s−1;
the waveguide near the minimum the the poloidal frequency
was considered (see Fig. 1b), so the the sign ”+” was chosen
in Eqs. (2, 3). The numerical summation shows that the ex-
cited wave is almost monochoromatic (Fig.3), as in the case
N = 1, but the radial structure is time-dependent: the radial
wavelength is decreasing with time (Fig.4). The reason for
this analogy of the phase mixing is the great impact on the
wave structure of the higher radial harmonics (n > 1). The
ratio of the radial componentB1 of the Alfvén wave mag-
netic field to the azimuthal componentB2 is defined as

B1

B2
≈ mL−1RN

∂RN/∂x1
.

The wave is poloidally polarized ifB1/B2 � 1, and it is
toroidally polarized ifB1/B2 � 1. Accordingly, the wave
polarization changes from poloidal to toroidal.

Fig. 4. Structure of the wave field across magnetic shells:(a) for
t=1000 s (10 periods approximately) after the impulse,(b) for
t=10000 s (∼100 periods) after the impulse.

shells. It is further assumed thatqN is independent ofω,
which approximately corresponds to the fact that the oper-
ation time of the source is much less than the characteris-
tic period of the oscillations under investigation, i.e. the
source is an impulsive one. In the case under study, when
qN (x1, ω)=const, the source is described by aδ-function of
time:

1
√

2π

∞∫
−∞

qNe−iωtdω =
√

2πqNδ(t).

As a result, from Eq. (6) we find that

RN (x1, t) = 2
∞∑

j=0

cj

ωN2j

sin(ωN2j t)RN2j (x
1), (7)

where

cj = qNπ−1/42−j

√
(2j)!

j !

√
2π.

Here we have substituted the summation indexn for j

(j=0, 1, . . .), because the terms of the series withn=2j+1
are zero, i.e. only evenn-harmonics of the waveguide are ex-
cited.

For the fundamental longitudinal harmonic (N=1), the
difference between the waveguide eigenfrequenciesωNn is
rather large, since in this caseλ2

R1/l2 ∼ 1. Thus, as can be
seen from the Eq. (7), the amplitude of the radial harmonic
with n=0 is considerably larger than the amplitudes of the
higher radial harmonics. Consequently, the excited wave will
have the frequencyω≈ωN0 and its radial structure will be
close to the Gaussian function. On the contrary, for the most
often observed second longitudinal harmonic (N=2), the dif-
ference between radial eigenfrequenciesωNn is very small,
sinceλ2

R2/l
2
�1 in this case, that also leads to the small dif-

ference of the different terms in Eq. (7).
In order to study the temporal and spatial evolution

of the wave, we performed a numerical summation of
the series Eq. (7) with the parametersλ2

R2/l2=3·10−4,
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�0=6.28·10−2 s−1; the waveguide near the minimum of the
poloidal frequency was considered (see Fig. 1b), so the sign
“+” was chosen in Eqs. (2, 3). The numerical summa-
tion shows that the excited wave is almost monochoromatic
(Fig.3), as in the caseN=1, but the radial structure is time-
dependent: the radial wavelength is decreasing with time
(Fig. 4). The reason for this analogy of the phase mixing
is the great impact on the wave structure of the higher radial
harmonics (n>1). The ratio of the radial componentB1 of
the Alfvén wave magnetic field to the azimuthal component
B2 is defined as

B1

B2
≈

mL−1RN

∂RN/∂x1
.

The wave is poloidally polarized ifB1/B2�1, and it is
toroidally polarized ifB1/B2�1. Accordingly, the wave po-
larization changes from poloidal to toroidal.

4 Summary

Let us describe the main results of this study. Within
the Alfvén waveguide, the impulsive source excites virtu-
ally all waveguide radial harmonics. The distance between
their eigenfrequencies strongly depends on the difference be-
tween poloidal and toroidal frequencies near the center of
the waveguide. This difference is generally large for the
fundamental harmonic structure along the background field
(N=1) and small for the second harmonic (N=2). Accord-
ingly, in the former case the relative difference between the
frequencies of the nearest radial harmonics1ωn is rather
large,1ωn∼ω, and in the latter case the harmonics are very
close to each other,1ωn�ω. In its turn, it determines the
radial structure of the excited modes. In theN=1 case, the
fundamental radial harmonic (n=0) is predominantly excited,
hence the radial structure of the oscillation almost coincides
with its eigenfunction, the Gaussian function. The oscilla-
tion is quasi-monochromatic throughout entire lifetime of
the wave, so the wave is poloidally polarized. For the sec-
ond longitudinal harmonicN=2, all radial harmonics make
almost an equal contribution to the wave structure. Soon
after the impulse, the higher radial harmonics come into
play and make the radial wavelength decrease with time.
This leads to a transformation of the wave from poloidal
to toroidal. In theN=2 case, the excited oscillation is still
quasi-monochromatic, since the frequencies of the different
harmonics are very close to each other.

It should be noted that observed poloidal Alfvén waves
in the magnetosphere usually have the second rather than
fundamental longitudinal harmonics (e.g. Takahashi and An-
derson, 1992). The quick transformation of these modes to
toroidal found in this paper makes it rather improbable their
interpretation as waveguide modes, or global poloidal modes.

It must be mentioned that to our best knowledge there
were no published observations of poloidal waves turning

into toroidal waves; besides, no observed high-m waves had
toroidal polarization. The simplest possible explanation of
this controversy is that poloidal waves are damped due to fi-
nite ionospheric conductivity, not having enough time for the
transition.

If, as is usually supposed, high-m waves are excited by
various kinetic instabilities, the instability growth rate is
the largest for the poloidally polarized waves (Klimushkin,
2000). But poloidal waves inevitable transform into toroidal
ones. Although the rate of the wave enhancements is de-
creasing in the course of transformation, it still remains pos-
itive, so the most enhanced oscillations must be toroidally
polarized. Because no high-m toroidal pulsations have been
observed, it casts some suspicion on the possibility of the
instabilities to generate high-m waves (see also Klimushkin
and Mager, 2004; Mager and Klimushkin, 2005).
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