Articles | Volume 19, issue 10/12
https://doi.org/10.5194/angeo-19-1289-2001
© Author(s) 2001. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/angeo-19-1289-2001
© Author(s) 2001. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Active spacecraft potential control for Cluster – implementation and first results
K. Torkar
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria
W. Riedler
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria
C. P. Escoubet
Space Science Department of ESA/ESTEC, 2200 AG Noordwijk, The Netherlands
M. Fehringer
Space Science Department of ESA/ESTEC, 2200 AG Noordwijk, The Netherlands
R. Schmidt
Space Science Department of ESA/ESTEC, 2200 AG Noordwijk, The Netherlands
R. J. L. Grard
Space Science Department of ESA/ESTEC, 2200 AG Noordwijk, The Netherlands
H. Arends
Space Science Department of ESA/ESTEC, 2200 AG Noordwijk, The Netherlands
F. Rüdenauer
Now at: International Atomic Energy Agency, Safeguards Analytical Laboratory, 2444 Seibersdorf, Austria
W. Steiger
Institute for Physics, Austrian Research Centers Seibersdorf, 2444 Seibersdorf, Austria
B. T. Narheim
Forsvarets Forskningsinstitutt, Avdeling for Elektronikk, 2007 Kjeller, Norway
K. Svenes
Forsvarets Forskningsinstitutt, Avdeling for Elektronikk, 2007 Kjeller, Norway
R. Torbert
Space Science Center, Science and Engineering Research Center, University of New Hampshire, Durham, NH 03824, USA
M. André
Swedish Institute of Space Physics, Uppsala Division, 75121 Uppsala, Sweden
A. Fazakerley
Dept. of Physics, Mullard Space Science Laboratory, University College London, Dorking, Surrey, UK
R. Goldstein
Southwest Research Institute, San Antonio, Texas 78238, USA
R. C. Olsen
Physics Department, Naval Postgraduate School, Monterey, California 93943, USA
A. Pedersen
Dept. of Physics, University of Oslo, Blindern, Norway
E. Whipple
University of Washington, Geophysics Department, Seattle, Washington 98195, USA
H. Zhao
Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100080, P. R. China
Viewed
Total article views: 1,962 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
980 | 897 | 85 | 1,962 | 91 | 67 |
- HTML: 980
- PDF: 897
- XML: 85
- Total: 1,962
- BibTeX: 91
- EndNote: 67
Cited
71 citations as recorded by crossref.
- Stabilization of Satellite Motion Relative to a Coulomb Spacecraft Formation H. Schaub 10.2514/1.8577
- Formation-Flying Planar Periodic Orbits in the Presence of Intersatellite Lorentz Force C. Peng & Y. Gao 10.1109/TAES.2017.2671478
- The Role of the Ionosphere in Providing Plasma to the Terrestrial Magnetosphere—An Historical Overview C. Chappell 10.1007/s11214-015-0168-5
- Transport of cold ions from the polar ionosphere to the plasma sheet K. Li et al. 10.1002/jgra.50518
- Substructures within a dipolarization front revealed by high‐temporal resolution Cluster observations Z. Yao et al. 10.1002/2015JA022238
- Hybrid control of orbit normal and along-track two-craft Coulomb tethers A. Natarajan & H. Schaub 10.1016/j.ast.2008.10.002
- High-Latitude Cold Ion Outflow Inferred From the Cluster Wake Observations in the Magnetotail Lobes and the Polar Cap Region K. Li et al. 10.3389/fphy.2021.743316
- Active Spacecraft Potential Control: Results From the Double Star Project K. Torkar et al. 10.1109/TPS.2006.883364
- Analytical Charge Analysis for Two- and Three-Craft Coulomb Formations J. Berryman & H. Schaub 10.2514/1.23785
- Invariant shape solutions of the spinning three craft Coulomb tether problem I. Hussein & H. Schaub 10.1007/s10569-006-9043-8
- Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance M. André 10.1088/0031-8949/90/12/128005
- Improved Determination of Plasma Density Based on Spacecraft Potential of the Magnetospheric Multiscale Mission Under Active Potential Control K. Torkar et al. 10.1109/TPS.2019.2911425
- Numerical Analysis of Active Spacecraft Charging in the Geostationary Environment K. Hoshi et al. 10.2514/1.A33270
- Electron density estimations derived from spacecraft potential measurements on Cluster in tenuous plasma regions A. Pedersen et al. 10.1029/2007JA012636
- Tethered Coulomb Structure Applied to Close Proximity Situational Awareness S. Panosian et al. 10.2514/1.A32212
- Coulomb formation conservation laws using differential orbit elements M. Kim & H. Schaub 10.1243/09544100JAERO39
- A survey of the polar cap density based on Cluster EFW probe measurements: Solar wind and solar irradiation dependence S. Haaland et al. 10.1029/2011JA017250
- Potential of Earth Orbiting Spacecraft Influenced by Meteoroid Hypervelocity Impacts J. Vaverka et al. 10.1109/TPS.2017.2676984
- Active Spacecraft Potential Control for the Magnetospheric Multiscale Mission K. Torkar et al. 10.1109/TPS.2011.2178867
- Fast Spacecraft Charging Mitigation With Plasma Contactors During High‐Power Electron Beam Emission in the GEO Environment B. Xue et al. 10.1029/2023JA031783
- Detection of meteoroid hypervelocity impacts on the Cluster spacecraft: First results J. Vaverka et al. 10.1002/2016JA023755
- Particle‐in‐cell modeling of spacecraft‐plasma interaction effects on double‐probe electric field measurements Y. Miyake & H. Usui 10.1002/2016RS006095
- Closed-Loop Charged Relative Motion Experiments Simulating Constrained Orbital Motion C. Seubert & H. Schaub 10.2514/1.48274
- Can an electron gun solve the outstanding problem of magnetosphere‐ionosphere connectivity? G. Delzanno et al. 10.1002/2016JA022728
- Development and coupling test of active spacecraft potential control – Next generation (ASPOC-NG) N. Mühlich et al. 10.1016/j.asr.2022.11.029
- Relative Orbital Motion of a Charged Object Near a Spaceborne Radially Directed Rotating Magnetic Dipole C. Peng et al. 10.1109/TAES.2021.3117067
- Electrostatic Spacecraft Collision Avoidance Using Piecewise-Constant Charges S. Wang & H. Schaub 10.2514/1.44397
- Pi 2 waves simultaneously observed by Cluster and CPMN ground-based magnetometers near the plasmapause H. Kawano et al. 10.5194/angeo-29-1663-2011
- Cluster observations of the high‐altitude cusp for northward interplanetary magnetic field: A case study A. Vontrat‐Reberac et al. 10.1029/2002JA009717
- Case studies of the dynamics of ionospheric ions in the Earth's magnetotail J. Sauvaud et al. 10.1029/2003JA009996
- Linear Dynamics and Stability Analysis of a Two-Craft Coulomb Tether Formation A. Natarajan & H. Schaub 10.2514/1.16480
- Improvement of plasma measurements onboard Cluster due to spacecraft potential control K. Torkar et al. 10.1016/j.asr.2005.01.109
- Tethered Coulomb Structures: Prospects and Challenges C. Seubert & H. Schaub 10.1007/BF03321508
- Tethered Capacitor Charge Mitigation in Electron Beam Experiments R. Marchand & G. Delzanno 10.3389/fspas.2018.00042
- Orbit-nadir aligned coulomb tether reconfiguration analysis A. Natarajan & H. Schaub 10.1007/BF03256566
- Qualification of the Liquid Metal Ion Source Instruments for the NASA MMS Mission K. Torkar & M. Tajmar 10.1109/TPS.2013.2282177
- Low‐energy (order 10 eV) ion flow in the magnetotail lobes inferred from spacecraft wake observations E. Engwall et al. 10.1029/2005GL025179
- The impact of cold electrons and cold ions in magnetospheric physics G. Delzanno et al. 10.1016/j.jastp.2021.105599
- Analysis of Cluster spacecraft potential during active control K. Torkar et al. 10.1016/j.asr.2005.01.110
- Analytic Solutions for Equal Mass Four-Craft Static Coulomb Formation H. Vasavada & H. Schaub 10.1007/BF03256540
- Optimal hybrid Coulomb control for on-track rendezvous and docking of spacecraft G. Kumar et al. 10.1177/09544100231162662
- Attitude and Power Analysis of Two-Node Multitethered Coulomb Structures C. Seubert et al. 10.2514/1.52185
- Necessary conditions for circularly-restricted static coulomb formations H. Schaub et al. 10.1007/BF03256504
- Geosynchronous Large Debris Reorbiter: Challenges and Prospects H. Schaub & D. Moorer 10.1007/s40295-013-0011-8
- Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft? G. Delzanno et al. 10.1002/2014JA020608
- Evaluation of the Asymmetry in Photoelectron Distribution Around the GEOTAIL Spacecraft T. Shimoda et al. 10.1109/TPS.2008.2004220
- Electrostatic structure around spacecraft in tenuous plasmas C. Cully et al. 10.1029/2007JA012269
- Modeling and Control of Satellite Formations: A Survey B. Andrievsky et al. 10.3390/automation3030026
- Interdependencies Between the Actively Controlled Cluster Spacecraft Potential, Ambient Plasma, and Electric Field Measurements K. Torkar et al. 10.1109/TPS.2015.2422733
- Survey of cold ionospheric outflows in the magnetotail E. Engwall et al. 10.5194/angeo-27-3185-2009
- Long-Term Study of Active Spacecraft Potential Control K. Torkar et al. 10.1109/TPS.2008.2003134
- Electrostatic Spacecraft Potential Structure and Wake Formation Effects for Characterization of Cold Ion Beams in the Earth's Magnetosphere S. Toledo‐Redondo et al. 10.1029/2019JA027145
- Hybrid propulsion system for formation flying using electrostatic forces C. Saaj et al. 10.1016/j.ast.2010.02.009
- Experimental Results of Electron Method for Remote Spacecraft Charge Sensing M. Bengtson et al. 10.1029/2019SW002341
- Multipoint observations of plasma phenomena made in space by Cluster M. Goldstein et al. 10.1017/S0022377815000185
- Future beam experiments in the magnetosphere with plasma contactors: The electron collection and ion emission routes G. Delzanno et al. 10.1002/2014JA020683
- Asymmetric electrostatic environment around spacecraft in weakly streaming plasmas Y. Miyake et al. 10.1002/2015JA021064
- Influence of the Ambient Electric Field on Measurements of the Actively Controlled Spacecraft Potential by MMS K. Torkar et al. 10.1002/2017JA024724
- The Spacecraft Wake: Interference With Electric Field Observations and a Possibility to Detect Cold Ions M. André et al. 10.1029/2021JA029493
- Ion Outflow and Escape in the Terrestrial Magnetosphere: Cluster Advances I. Dandouras 10.1029/2021JA029753
- Linear stability and shape analysis of spinning three-craft Coulomb formations E. Hogan & H. Schaub 10.1007/s10569-011-9387-6
- Outflow of low‐energy ions and the solar cycle M. André et al. 10.1002/2014JA020714
- Wake formation behind positively charged spacecraft in flowing tenuous plasmas E. Engwall et al. 10.1063/1.2199207
- Charged-Spacecraft Formation: Concept, Deployment and Coulomb-Force Control M. Lin & M. Xu 10.1109/ACCESS.2020.2983307
- Active Spacecraft Potential Control Investigation K. Torkar et al. 10.1007/s11214-014-0049-3
- Plasma Density Estimates From Spacecraft Potential Using MMS Observations in the Dayside Magnetosphere M. Andriopoulou et al. 10.1002/2017JA025086
- Stellar ablation of planetary atmospheres T. Moore & J. Horwitz 10.1029/2005RG000194
- North‐south asymmetries in cold plasma density in the magnetotail lobes: Cluster observations S. Haaland et al. 10.1002/2016JA023404
- Collinear invariant shapes for three-spacecraft Coulomb formations E. Hogan & H. Schaub 10.1016/j.actaastro.2011.10.020
- Lorentz-force-perturbed orbits with application to J2-invariant formation C. Peng & Y. Gao 10.1016/j.actaastro.2012.03.002
- Tethered Coulomb Structure Applied to Close Proximity Situational Awareness S. Panosian et al. 10.2514/1.A32212
Latest update: 21 Nov 2024