Articles | Volume 43, issue 2
https://doi.org/10.5194/angeo-43-687-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-687-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comparison of methods to compute the rate of horizontal geomagnetic field variation
Samuel A. Fielding
CORRESPONDING AUTHOR
School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Rd, King's Buildings, Edinburgh, EH9 3FE, United Kingdom
Philip W. Livermore
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
Ciarán D. Beggan
British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh, EH14 4AP, United Kingdom
Kathryn A. Whaler
School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Rd, King's Buildings, Edinburgh, EH9 3FE, United Kingdom
Gemma S. Richardson
British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh, EH14 4AP, United Kingdom
Related authors
No articles found.
Robert Lyon, Gemma S. Richardson, and Orsi Baillie
EGUsphere, https://doi.org/10.5194/egusphere-2025-2463, https://doi.org/10.5194/egusphere-2025-2463, 2025
Short summary
Short summary
Severe space weather events can create electric fields in the sub-surface which can disrupt, and damage grounded technological systems. In 2012 we began installing monitoring equipment at the UK geomagnetic observatories to measure these electric fields to help us better understand their effects. These have run for over ten years, gathering useful data. This paper covers the design of the system, the problems we encountered, how we overcame them and how we make the data available.
Relly Margiono, Christopher W. Turbitt, Ciarán D. Beggan, and Kathryn A. Whaler
Geosci. Instrum. Method. Data Syst., 10, 169–182, https://doi.org/10.5194/gi-10-169-2021, https://doi.org/10.5194/gi-10-169-2021, 2021
Short summary
Short summary
We have produced a standardised high-quality set of measurements to create definitive data for four Indonesian Geomagnetic Observatories for 2010–2018. We explain the steps taken to update the existing data collection and processing protocols and suggest improvements to further enhance the quality of the magnetic time series at each observatory. The new data will fill the gap in the western Pacific region and provide input into geomagnetic field modeling and secular variation studies.
Cited articles
Abda, Z. M. K., Aziz, N. F. A., Kadir, M. Z. A. A., and Rhazali, Z. A.: A Review of Geomagnetically Induced Current Effects on Electrical Power System: Principles and Theory, IEEE Access, 8, 200237–200258, https://doi.org/10.1109/ACCESS.2020.3034347, 2020. a
Akasofu, S. I.: The development of the auroral substorm, Planetary and Space Science, 12, 273–282, https://doi.org/10.1016/0032-0633(64)90151-5, 1964. a
Alken, P. and Egbert, G. D.: Modeling Toroidal Currents in the Ionospheric Electrojet Regions, Journal of Geophysical Research: Space Physics, 130, e2024JA033080, https://doi.org/10.1029/2024JA033080, 2025. a
Bedrosian, P. A.: MT+, Integrating Magnetotellurics to Determine Earth Structure, Physical State, and Processes, Surveys in Geophysics, 28, 121–167, https://doi.org/10.1007/s10712-007-9019-6, 2007. a
Bennett, J. S., Vyhnalek, B. E., Greenall, H., Bridge, E. M., Gotardo, F., Forstner, S., Harris, G. I., Miranda, F. A., and Bowen, W. P.: Precision Magnetometers for Aerospace Applications: A Review, Sensors, 21, 5568, https://doi.org/10.3390/s21165568, 2021. a
Bolduc, L.: GIC observations and studies in the Hydro-Québec power system, Journal of Atmospheric and Solar-Terrestrial Physics, 64, 1793–1802, https://doi.org/10.1016/S1364-6826(02)00128-1, 2002. a
Bolic, M.: Chapter 3 – Electronics, in: Pervasive Cardiovascular and Respiratory Monitoring Devices, edited by Bolic, M., 73–123, Academic Press, ISBN 978-0-12-820947-9, https://doi.org/10.1016/B978-0-12-820947-9.00011-8, 2023. a
Boteler, D. H.: A 21st Century View of the March 1989 Magnetic Storm, Space Weather, 17, 1427–1441, https://doi.org/10.1029/2019SW002278, 2019. a
Bower, G. E., Imber, S., Milan, S. E., Schillings, A., Fleetham, A. L., and Gjerloev, J. W.: Location of Geomagnetic Disturbances in Relation to the Field Aligned Current Boundary, Journal of Geophysical Research: Space Physics, 129, e2024JA033039, https://doi.org/10.1029/2024JA033039, 2024. a, b
Bracke, S. (Ed.) and INTERMAGNET Operations Committee and Executive Council: INTERMAGNET Technical Reference Manual, Version a2d1a00, https://tech-man.intermagnet.org/latest/ (last access: 27 May 2025), 2025. a
Case, N. A., Hartley, D. P., Grocott, A., Miyoshi, Y., Matsuoka, A., Imajo, S., Kurita, S., Shinohara, I., and Teramoto, M.: Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations, Journal of Geophysical Research: Space Physics, 126, e2020JA028765, https://doi.org/10.1029/2020JA028765, 2021. a
Clette, F. and Lefèvre, L.: SILSO Sunspot Number V2.0, WDC SILSO – Royal Observatory of Belgium (ROB) [data set], https://doi.org/10.24414/qnza-ac80, 2015. a
Colagrossi, A., Pesce, V., Silvestrini, S., Gonzalez-Arjona, D., Hermosin, P., and Battilana, M.: Chapter Six – Sensors, in: Modern Spacecraft Guidance, Navigation, and Control, edited by Pesce, V., Colagrossi, A., and Silvestrini, S., Elsevier, 253–336, ISBN 978-0-323-90916-7, https://doi.org/10.1016/B978-0-323-90916-7.00006-8, 2023. a
Cowley, S. W. H.: Magnetosphere-Ionosphere Interactions: A Tutorial Review, in: Magnetospheric Current Systems, American Geophysical Union (AGU), 91–106, ISBN 978-1-118-66900-6, https://doi.org/10.1029/GM118p0091, 2000. a
Dai, L., Zhu, M., Ren, Y., Gonzalez, W., Wang, C., Sibeck, D., Samsonov, A., Escoubet, P., Tang, B., Zhang, J., and Branduardi-Raymont, G.: Global-scale magnetosphere convection driven by dayside magnetic reconnection, Nature Communications, 15, 639, https://doi.org/10.1038/s41467-024-44992-y, 2024. a
DeForest, S. E. and McIlwain, C. E.: Plasma clouds in the magnetosphere, Journal of Geophysical Research (1896–1977), 76, 3587–3611, https://doi.org/10.1029/JA076i016p03587, 1971. a
Despirak, I., Setsko, P., Lubchich, A., Hajra, R., Sakharov, Y., Lakhina, G., Selivanov, V., and Tsurutani, B. T.: Geomagnetically induced currents (GICs) during strong geomagnetic activity (storms, substorms, and magnetic pulsations) on 23–24 April 2023, Journal of Atmospheric and Solar-Terrestrial Physics, 261, 106293, https://doi.org/10.1016/j.jastp.2024.106293, 2024. a
de Villiers, J. S., Kosch, M., Yamazaki, Y., and Lotz, S.: Influences of various magnetospheric and ionospheric current systems on geomagnetically induced currents around the world, Space Weather, 15, 403–417, https://doi.org/10.1002/2016SW001566, 2017. a
Dungey, J. W.: Interplanetary Magnetic Field and the Auroral Zones, Physical Review Letters, 6, 47–48, https://doi.org/10.1103/PhysRevLett.6.47, 1961. a
Espinosa, K. V., Padilha, A. L., and Alves, L. R.: Effects of Ionospheric Conductivity and Ground Conductance on Geomagnetically Induced Currents During Geomagnetic Storms: Case Studies at Low-Latitude and Equatorial Regions, Space Weather, 17, 252–268, https://doi.org/10.1029/2018SW002094, 2019. a
Finlay, C. C., Kloss, C., Olsen, N., Hammer, M. D., Tøffner-Clausen, L., Grayver, A., and Kuvshinov, A.: The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly, Earth, Planets and Space, 72, 156, https://doi.org/10.1186/s40623-020-01252-9, 2020. a, b, c
Ganushkina, N., Jaynes, A., and Liemohn, M.: Space Weather Effects Produced by the Ring Current Particles, Space Science Reviews, 212, 1315–1344, https://doi.org/10.1007/s11214-017-0412-2, 2017. a
Grodji, O. D. F., Doumbia, V., Amaechi, P. O., Amory-Mazaudier, C., N’guessan, K., Diaby, K. A. A., Zie, T., and Boka, K.: A Study of Solar Flare Effects on the Geomagnetic Field Components during Solar Cycles 23 and 24, Atmosphere, 13, 69, https://doi.org/10.3390/atmos13010069, 2022. a
Guo, J., Pulkkinen, T. I., Tanskanen, E. I., Feng, X., Emery, B. A., Liu, H., Liu, C., and Zhong, D.: Annual variations in westward auroral electrojet and substorm occurrence rate during solar cycle 23, Journal of Geophysical Research: Space Physics, 119, 2061–2068, https://doi.org/10.1002/2013JA019742, 2014. a, b
Gurram, H., Egedal, J., and Daughton, W.: Shear Alfvén Waves Driven by Magnetic Reconnection as an Energy Source for the Aurora Borealis, Geophysical Research Letters, 48, e2021GL094201, https://doi.org/10.1029/2021GL094201, 2021. a
Hübert, J., Eaton, E., Beggan, C. D., Montiel‐Álvarez, A. M., Kiyan, D., and Hogg, C.: Developing a New Ground Electric Field Model for Geomagnetically Induced Currents in Britain Based on Long‐Period Magnetotelluric Data, Space Weather, 23, https://doi.org/10.1029/2025SW004427, 2025. a
Ingham, M., Pratscher, K., Heise, W., Bertrand, E., Kruglyakov, M., and Rodger, C.: Influence of Tectonic and Geological Structure on GIC in Southern South Island, New Zealand, Space Weather, 21, https://doi.org/10.1029/2023SW003550, 2023. a
Juusola, L., Vanhamäki, H., Viljanen, A., and Smirnov, M.: Induced currents due to 3D ground conductivity play a major role in the interpretation of geomagnetic variations, Ann. Geophys., 38, 983–998, https://doi.org/10.5194/angeo-38-983-2020, 2020. a
Juusola, L., Viljanen, A., Dimmock, A. P., Kellinsalmi, M., Schillings, A., and Weygand, J. M.: Drivers of rapid geomagnetic variations at high latitudes, Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, 2023. a
Kamide, Y. and Akasofu, S. I.: The Auroral electrojet and field-aligned current, Planetary and Space Science, 24, 203–213, https://doi.org/10.1016/0032-0633(76)90017-9, 1976. a
Kanekal, S. and Miyoshi, Y.: Dynamics of the terrestrial radiation belts: a review of recent results during the VarSITI (Variability of the Sun and Its Terrestrial Impact) era, 2014–2018, Progress in Earth and Planetary Science, 8, 35, https://doi.org/10.1186/s40645-021-00413-y, 2021. a
Kelbert, A. and Lucas, G. M.: Modified GIC Estimation Using 3-D Earth Conductivity, Space Weather, 18, e2020SW002467, https://doi.org/10.1029/2020SW002467, 2020. a, b
Kouassi, N., Doumbia, V., Boka, K., Tuo, Z., Grodji, O. D. F., Kassamba, A. A., and Zillé, A. F.: Geomagnetically-induced effects related to disturbed geomagnetic field variations at low latitude, Journal of Earth System Science, 130, 180, https://doi.org/10.1007/s12040-021-01670-7, 2021. a, b
Love, J. J. and Chulliat, A.: An International Network of Magnetic Observatories, Eos, Transactions American Geophysical Union, 94, 373–374, https://doi.org/10.1002/2013EO420001, 2013. a
Lubchich, A. A., Despirak, I. V., and Werner, R.: Statistical Studies of the Relationship between the Amplitude of Positive Magnetic Bays at Mid-Latitudes, Geomagnetic Activity, and Solar Wind Parameters, Geomagnetism and Aeronomy, 64, 833–844, https://doi.org/10.1134/S0016793224600814, 2024. a
Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clilverd, M. A., Petersen, T., Wolf, M. M., Thomson, N. R., and Divett, T.: Long-term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver, Space Weather, 15, 1020–1038, https://doi.org/10.1002/2017SW001635, 2017. a
Mac Manus, D. H., Rodger, C. J., Dalzell, M., Renton, A., Richardson, G. S., Petersen, T., and Clilverd, M. A.: Geomagnetically Induced Current Modeling in New Zealand: Extreme Storm Analysis Using Multiple Disturbance Scenarios and Industry Provided Hazard Magnitudes, Space Weather, 20, e2022SW003320, https://doi.org/10.1029/2022SW003320, 2022. a
Madsen, F. D., Beggan, C. D., and Whaler, K. A.: Forecasting changes of the magnetic field in the United Kingdom from L1 Lagrange solar wind measurements, Frontiers in Physics, 10, https://doi.org/10.3389/fphy.2022.1017781, 2022. a
Marshall, R. A., Smith, E. A., Francis, M. J., Waters, C. L., and Sciffer, M. D.: A preliminary risk assessment of the Australian region power network to space weather, Space Weather, 9, https://doi.org/10.1029/2011SW000685, 2011. a
Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., and Morschhauser, A.: The Geomagnetic Kp Index and Derived Indices of Geomagnetic Activity, Space Weather, 19, e2020SW002641, https://doi.org/10.1029/2020SW002641, 2021. a
Mishra, W. and Teriaca, L.: Propagation of coronal mass ejections from the Sun to the Earth, Journal of Astrophysics and Astronomy, 44, 20, https://doi.org/10.1007/s12036-023-09910-6, 2023. a
Oughton, E., Hapgood, M., Richardson, G., Beggan, C., Thomson, A., Gibbs, M., Burnett, C., Gaunt, C., Trichas, M., Dada, R., and Horne, R.: A Risk Assessment Framework for the Socioeconomic Impacts of Electricity Transmission Infrastructure Failure Due to Space Weather: An Application to the United Kingdom, Risk Analysis, 39, https://doi.org/10.1111/risa.13229, 2018. a
Pedersen, M. N., Juusola, L., Vanhamäki, H., Aikio, A. T., and Viljanen, A.: Rapid Geomagnetic Variations During High-Speed Stream, Sheath and Magnetic Cloud-Driven Geomagnetic Storms From 1996 to 2023, Journal of Geophysical Research: Space Physics, 129, e2024JA032656, https://doi.org/10.1029/2024JA032656, 2024. a
Pirjola, R. J.: Modelling the electric and magnetic fields at the Earths surface due to an auroral electrojet, Journal of Atmospheric and Solar-Terrestrial Physics, 60, 1139–1148, https://doi.org/10.1016/S1364-6826(98)00070-4, 1998. a, b
Pulkkinen, A., Lindahl, S., Viljanen, A., and Pirjola, R.: Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system, Space Weather, 3, https://doi.org/10.1029/2004SW000123, 2005. a
Pulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D., Eichner, J., Cilliers, P. J., Welling, D., Savani, N. P., Weigel, R. S., Love, J. J., Balch, C., Ngwira, C. M., Crowley, G., Schultz, A., Kataoka, R., Anderson, B., Fugate, D., Simpson, J. J., and MacAlester, M.: Geomagnetically induced currents: Science, engineering, and applications readiness, Space Weather, 15, 828–856, https://doi.org/10.1002/2016SW001501, 2017. a
Rajput, V. N., Boteler, D. H., Rana, N., Saiyed, M., Anjana, S., and Shah, M.: Insight into impact of geomagnetically induced currents on power systems: Overview, challenges and mitigation, Electric Power Systems Research, 192, 106927, https://doi.org/10.1016/j.epsr.2020.106927, 2021. a
Ramírez-Niño, J., Haro-Hernández, C., Rodriguez-Rodriguez, J. H., and Mijarez, R.: Core saturation effects of geomagnetic induced currents in power transformers, Journal of Applied Research and Technology, 14, 87–92, https://doi.org/10.1016/j.jart.2016.04.003, 2016. a
Rastogi, R. G.: Magnetic storm effects in H and D components of the geomagnetic field at low and middle latitudes, Journal of Atmospheric and Solar-Terrestrial Physics, 67, 665–675, https://doi.org/10.1016/j.jastp.2004.11.002, 2005. a
Reames, D. V.: Particle acceleration at the Sun and in the heliosphere, Space Science Reviews, 90, 413–491, https://doi.org/10.1023/A:1005105831781, 1999. a
Robertson, R. C.: A Numerical Evaluation of the Limitations of the Thin-Sheet Approximation, IEEE Transactions on Geoscience and Remote Sensing, GE-25, 130–137, https://doi.org/10.1109/TGRS.1987.289812, 1987. a
Rodger, C. J., Mac Manus, D. H., Dalzell, M., Thomson, A. W. P., Clarke, E., Petersen, T., Clilverd, M. A., and Divett, T.: Long term geomagnetically induced current observations from New Zealand: peak current estimates for extreme geomagnetic storms, Space Weather, 15, 1447–1460, https://doi.org/10.1002/2017SW001691, 2017. a, b, c, d
Smith, A., Forsyth, C., Rae, I. J., Rodger, C., and Freeman, M.: The Impact of Sudden Commencements on Ground Magnetic Field Variability: Immediate and Delayed Consequences, Space Weather, 19, https://doi.org/10.1029/2021SW002764, 2021. a, b, c
Smith, A. R. A., Pačes, M., and DISC, S.: Python tools for ESA’s Swarm mission: VirES for Swarm and surrounding ecosystem, Frontiers in Astronomy and Space Sciences, 9, https://doi.org/10.3389/fspas.2022.1002697, 2022a. a
Smith, A. R. A., Pačes, M., and Santillan, D.: ESA-VirES/VirES-Python-Client, Zenodo [software], https://doi.org/10.5281/zenodo.14946149, 2025. a
Smith, A. W., Rodger, C. J., Mac Manus, D. H., Forsyth, C., Rae, I. J., Freeman, M. P., Clilverd, M. A., Petersen, T., and Dalzell, M.: The Correspondence Between Sudden Commencements and Geomagnetically Induced Currents: Insights From New Zealand, Space Weather, 20, e2021SW002983, https://doi.org/10.1029/2021SW002983, 2022b. a, b
Tan, X., Dunlop, M. W., Yang, Y. Y., Russell, C. T., and Escoubet, C. P.: Comparison of the Distribution of the In Situ Ring Current Density Based on Magnetic Field Observations From THEMIS, MMS and Cluster, Journal of Geophysical Research: Space Physics, 130, e2024JA033085, https://doi.org/10.1029/2024JA033085, 2025. a
Thompson, R.: Geomagnetic field: Westward drift, in: Geophysics, Springer US, Boston, MA, 507–511, ISBN 978-0-387-30752-7, https://doi.org/10.1007/0-387-30752-4_63, 1990. a
Thomson, A. W. P., Dawson, E. B., and Reay, S. J.: Quantifying extreme behavior in geomagnetic activity, Space Weather, 9, https://doi.org/10.1029/2011SW000696, 2011. a, b
Tsurutani, B. T. and Hajra, R.: The Interplanetary and Magnetospheric causes of Geomagnetically Induced Currents (GICs) >10 A in the Mäntsälä Finland Pipeline: 1999 through 2019, Journal of Space Weather and Space Climate, 11, 23, https://doi.org/10.1051/swsc/2021001, 2021. a, b, c, d
Tsurutani, B. T. and Lakhina, G. S.: An extreme coronal mass ejection and consequences for the magnetosphere and Earth, Geophysical Research Letters, 41, 287–292, https://doi.org/10.1002/2013GL058825, 2014. a
Tsurutani, B. T. and Meng, C.-I.: Interplanetary magnetic-field variations and substorm activity, Journal of Geophysical Research (1896–1977), 77, 2964–2970, https://doi.org/10.1029/JA077i016p02964, 1972. a
Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S. I., and Smith, E. J.: Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), Journal of Geophysical Research: Space Physics, 93, 8519–8531, https://doi.org/10.1029/JA093iA08p08519, 1988. a
Tsurutani, B. T., Sen, A., Hajra, R., Lakhina, G. S., Horne, R. B., and Hada, T.: Review of the August 1972 and March 1989 (Allen) Space Weather Events: Can We Learn Anything New From Them?, Journal of Geophysical Research: Space Physics, 129, e2024JA032622, https://doi.org/10.1029/2024JA032622, 2024. a
Usoskin, I. G. and Kovaltsov, G. A.: Occurrence of extreme solar particle events: assessment from historical proxy data, The Astrophysical Journal, 757, 92, https://doi.org/10.1088/0004-637X/757/1/92, 2012. a
Vanhamäki, H., Viljanen, A., Pirjola, R., and Amm, O.: Deriving the geomagnetically induced electric field at the Earth’s surface from the time derivative of the vertical magnetic field, Earth, Planets and Space, 65, 997–1006, https://doi.org/10.5047/eps.2013.03.013, 2013. a
Viljanen, A.: Relation of geomagnetically induced currents and local geomagnetic variations, IEEE Transactions on Power Delivery, 13, 1285–1290, https://doi.org/10.1109/61.714497, 1998. a
Viljanen, A., Nevanlinna, H., Pajunpää, K., and Pulkkinen, A.: Time derivative of the horizontal geomagnetic field as an activity indicator, Ann. Geophys., 19, 1107–1118, https://doi.org/10.5194/angeo-19-1107-2001, 2001. a, b, c
Wawrzaszek, A., Gil, A., Modzelewska, R., Tsurutani, B. T., and Wawrzaszek, R.: Analysis of Large Geomagnetically Induced Currents During the 7–8 September 2017 Storm: Geoelectric Field Mapping, Space Weather, 21, e2022SW003383, https://doi.org/10.1029/2022SW003383, 2023. a
Wawrzaszek, A., Hajra, R., Gil, A., Modzelewska, R., Tsurutani, B. T., and Wawrzaszek, R.: Geoelectric fields and geomagnetically induced currents during the April 23–24, 2023 geomagnetic storm, Scientific Reports, 14, 25074, https://doi.org/10.1038/s41598-024-76449-z, 2024. a, b
Zhang, H. X., Lu, J. Y., and Wang, M.: Energy transfer across magnetopause under dawn–dusk IMFs, Scientific Reports, 13, 7409, https://doi.org/10.1038/s41598-023-34082-2, 2023. a
Zhou, X. Y. and Tsurutani, B. T.: Dawn and dusk auroras caused by gradual, intense solar wind ram pressure events, Journal of Atmospheric and Solar-Terrestrial Physics, 66, 153–160, https://doi.org/10.1016/j.jastp.2003.09.008, 2004. a
Short summary
Space weather can cause electric currents to flow through the ground at the Earth’s surface. These currents correspond closely to the rate of change of the magnetic field, following Faraday’s law of induction. The scientific community regularly uses two different methods to calculate the rate of change of the magnetic field for this purpose. We show that there is a large difference between the two methods, and highlight certain situations where this difference is potentially significant.
Space weather can cause electric currents to flow through the ground at the Earth’s surface....