Articles | Volume 43, issue 2
https://doi.org/10.5194/angeo-43-489-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-489-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of interplanetary shock waves on turbulence parameters
Emilia Kilpua
CORRESPONDING AUTHOR
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Simon Good
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Juska Soljento
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Domenico Trotta
The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
European Space Astronomy Centre, European Space Agency, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain
Tia Bäcker
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Julia Ruohotie
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Jens Pomoell
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Chaitanya Sishtla
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, UK
Rami Vainio
Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
Related authors
Venla Koikkalainen, Emilia Kilpua, Simon Good, and Adnane Osmane
Nonlin. Processes Geophys., 32, 309–327, https://doi.org/10.5194/npg-32-309-2025, https://doi.org/10.5194/npg-32-309-2025, 2025
Short summary
Short summary
We study time series of solar wind large-scale structures (magnetic clouds, sheaths, slow and fast streams). These have profound importance with regard to causing disturbances in the heliospheric conditions and driving space weather on Earth. The used techniques include methods derived from information theory to determine entropy and complexity. We find that all of these techniques show stochastic fluctuations, but magnetic clouds stand out due to their coherent magnetic field.
Venla Koikkalainen, Maxime Grandin, Emilia Kilpua, Abiyot Workayehu, Ivan Zaitsev, Liisa Juusola, Shi Tao, Markku Alho, Lauri Pänkäläinen, Giulia Cozzani, Konstantinos Horaites, Jonas Suni, Yann Pfau-Kempf, Urs Ganse, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2265, https://doi.org/10.5194/egusphere-2025-2265, 2025
Short summary
Short summary
We use a numerical simulation to study phenomena that occur between the Earth’s dipolar magnetic field and the nightside of near-Earth space. We observe the formation of large-scale vortex flows with scales of several Earth radii. On the ionospheric grid of the simulation we find that the field-aligned currents formed in the simulation reflect the vortex flow in the transition region. The main finding is that the vortex flow is a result of a combination of flow dynamics and a plasma instability.
Emilia K. J. Kilpua, Simon Good, Matti Ala-Lahti, Adnane Osmane, and Venla Koikkalainen
Ann. Geophys., 42, 163–177, https://doi.org/10.5194/angeo-42-163-2024, https://doi.org/10.5194/angeo-42-163-2024, 2024
Short summary
Short summary
The solar wind is organised into slow and fast streams, interaction regions, and transient structures originating from solar eruptions. Their internal characteristics are not well understood. A more comprehensive understanding of such features can give insight itno physical processes governing their formation and evolution. Using tools from information theory, we find that the solar wind shows universal turbulent properties on smaller scales, while on larger scales, clear differences arise.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Preprint under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Adnane Osmane, Mikko Savola, Emilia Kilpua, Hannu Koskinen, Joseph E. Borovsky, and Milla Kalliokoski
Ann. Geophys., 40, 37–53, https://doi.org/10.5194/angeo-40-37-2022, https://doi.org/10.5194/angeo-40-37-2022, 2022
Short summary
Short summary
It has long been known that particles get accelerated close to the speed of light in the near-Earth space environment. Research in the last decades has also clarified what processes and waves are responsible for the acceleration of particles. However, it is difficult to quantify the scale of the impact of various processes competing with one another. In this study we present a methodology to quantify the impact waves can have on energetic particles.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Emilia K. J. Kilpua, Dominique Fontaine, Simon W. Good, Matti Ala-Lahti, Adnane Osmane, Erika Palmerio, Emiliya Yordanova, Clement Moissard, Lina Z. Hadid, and Miho Janvier
Ann. Geophys., 38, 999–1017, https://doi.org/10.5194/angeo-38-999-2020, https://doi.org/10.5194/angeo-38-999-2020, 2020
Short summary
Short summary
This paper studies magnetic field fluctuations in three turbulent sheath regions ahead of interplanetary coronal mass ejections (ICMEs) in the near-Earth solar wind. Our results show that fluctuation properties vary significantly in different parts of the sheath when compared to solar wind ahead. Turbulence in sheaths resembles that of the slow solar wind in the terrestrial magnetosheath, e.g. regarding compressibility and intermittency, and it often lacks Kolmogorov's spectral indices.
Venla Koikkalainen, Emilia Kilpua, Simon Good, and Adnane Osmane
Nonlin. Processes Geophys., 32, 309–327, https://doi.org/10.5194/npg-32-309-2025, https://doi.org/10.5194/npg-32-309-2025, 2025
Short summary
Short summary
We study time series of solar wind large-scale structures (magnetic clouds, sheaths, slow and fast streams). These have profound importance with regard to causing disturbances in the heliospheric conditions and driving space weather on Earth. The used techniques include methods derived from information theory to determine entropy and complexity. We find that all of these techniques show stochastic fluctuations, but magnetic clouds stand out due to their coherent magnetic field.
Venla Koikkalainen, Maxime Grandin, Emilia Kilpua, Abiyot Workayehu, Ivan Zaitsev, Liisa Juusola, Shi Tao, Markku Alho, Lauri Pänkäläinen, Giulia Cozzani, Konstantinos Horaites, Jonas Suni, Yann Pfau-Kempf, Urs Ganse, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2265, https://doi.org/10.5194/egusphere-2025-2265, 2025
Short summary
Short summary
We use a numerical simulation to study phenomena that occur between the Earth’s dipolar magnetic field and the nightside of near-Earth space. We observe the formation of large-scale vortex flows with scales of several Earth radii. On the ionospheric grid of the simulation we find that the field-aligned currents formed in the simulation reflect the vortex flow in the transition region. The main finding is that the vortex flow is a result of a combination of flow dynamics and a plasma instability.
Emilia K. J. Kilpua, Simon Good, Matti Ala-Lahti, Adnane Osmane, and Venla Koikkalainen
Ann. Geophys., 42, 163–177, https://doi.org/10.5194/angeo-42-163-2024, https://doi.org/10.5194/angeo-42-163-2024, 2024
Short summary
Short summary
The solar wind is organised into slow and fast streams, interaction regions, and transient structures originating from solar eruptions. Their internal characteristics are not well understood. A more comprehensive understanding of such features can give insight itno physical processes governing their formation and evolution. Using tools from information theory, we find that the solar wind shows universal turbulent properties on smaller scales, while on larger scales, clear differences arise.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Preprint under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Adnane Osmane, Mikko Savola, Emilia Kilpua, Hannu Koskinen, Joseph E. Borovsky, and Milla Kalliokoski
Ann. Geophys., 40, 37–53, https://doi.org/10.5194/angeo-40-37-2022, https://doi.org/10.5194/angeo-40-37-2022, 2022
Short summary
Short summary
It has long been known that particles get accelerated close to the speed of light in the near-Earth space environment. Research in the last decades has also clarified what processes and waves are responsible for the acceleration of particles. However, it is difficult to quantify the scale of the impact of various processes competing with one another. In this study we present a methodology to quantify the impact waves can have on energetic particles.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Emilia K. J. Kilpua, Dominique Fontaine, Simon W. Good, Matti Ala-Lahti, Adnane Osmane, Erika Palmerio, Emiliya Yordanova, Clement Moissard, Lina Z. Hadid, and Miho Janvier
Ann. Geophys., 38, 999–1017, https://doi.org/10.5194/angeo-38-999-2020, https://doi.org/10.5194/angeo-38-999-2020, 2020
Short summary
Short summary
This paper studies magnetic field fluctuations in three turbulent sheath regions ahead of interplanetary coronal mass ejections (ICMEs) in the near-Earth solar wind. Our results show that fluctuation properties vary significantly in different parts of the sheath when compared to solar wind ahead. Turbulence in sheaths resembles that of the slow solar wind in the terrestrial magnetosheath, e.g. regarding compressibility and intermittency, and it often lacks Kolmogorov's spectral indices.
Cited articles
Abraham-Shrauner, B. and Yun, S. H.: Interplanetary shocks seen by Ames Plasma Probe on Pioneer 6 and 7, J. Geophys. Res., 81, 2097, https://doi.org/10.1029/JA081i013p02097, 1976. a
Adhikari, L., Zank, G. P., Hunana, P., and Hu, Q.: The Interaction of Turbulence with Parallel and Perpendicular Shocks: Theory and Observations at 1 au, Astrophys. J., 833, 218, https://doi.org/10.3847/1538-4357/833/2/218, 2016. a
Bale, S. D., Balikhin, M. A., Horbury, T. S., Krasnoselskikh, V. V., Kucharek, H., Möbius, E., Walker, S. N., Balogh, A., Burgess, D., Lembège, B., Lucek, E. A., Scholer, M., Schwartz, S. J., and Thomsen, M. F.: Quasi-perpendicular Shock Structure and Processes, Space Sci. Rev., 118, 161–203, https://doi.org/10.1007/s11214-005-3827-0, 2005. a
Bavassano, B., Pietropaolo, E., and Bruno, R.: Cross-helicity and residual energy in solar wind turbulence: Radial evolution and latitudinal dependence in the region from 1 to 5 AU, J. Geophys. Res., 103, 6521–6530, https://doi.org/10.1029/97JA03029, 1998. a, b, c
Bavassano, B., Pietropaolo, E., and Bruno, R.: Alfvénic turbulence in the polar wind: A statistical study on cross helicity and residual energy variations, J. Geophys. Res., 105, 12697–12704, https://doi.org/10.1029/2000JA900004, 2000. a
Belcher, J. W. and Davis, Leverett, J.: Large-amplitude Alfvén waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534, https://doi.org/10.1029/JA076i016p03534, 1971. a
Bruno, R. and Carbone, V.: The Solar Wind as a Turbulence Laboratory, Living Rev. Sol. Phys., 10, 2, https://doi.org/10.12942/lrsp-2013-2, 2013. a, b, c, d
Burgess, D., Lucek, E. A., Scholer, M., Bale, S. D., Balikhin, M. A., Balogh, A., Horbury, T. S., Krasnoselskikh, V. V., Kucharek, H., Lembège, B., Möbius, E., Schwartz, S. J., Thomsen, M. F., and Walker, S. N.: Quasi-parallel Shock Structure and Processes, Space Sci. Rev., 118, 205–222, https://doi.org/10.1007/s11214-005-3832-3, 2005. a
Chen, C. H. K., Bale, S. D., Salem, C. S., and Maruca, B. A.: Residual Energy Spectrum of Solar Wind Turbulence, Astrophys. J., 770, 125, https://doi.org/10.1088/0004-637X/770/2/125, 2013. a, b, c
Chen, C. H. K., Bale, S. D., Bonnell, J. W., Borovikov, D., Bowen, T. A., Burgess, D., Case, A. W., Chandran, B. D. G., de Wit, T. D., Goetz, K., Harvey, P. R., Kasper, J. C., Klein, K. G., Korreck, K. E., Larson, D., Livi, R., MacDowall, R. J., Malaspina, D. M., Mallet, A., McManus, M. D., Moncuquet, M., Pulupa, M., Stevens, M. L., and Whittlesey, P.: The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere, ApJS, 246, 53, https://doi.org/10.3847/1538-4365/ab60a3, 2020. a, b
Cranmer, S. and Van Ballegooijen, A.: On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere, Astrophys. J. Suppl. S., 156, 265, https://doi.org/10.1086/426507, 2005. a
D'Amicis, R., Bruno, R., and Bavassano, B.: Is geomagnetic activity driven by solar wind turbulence?, Geophys. Res. Lett., 34, L05108, https://doi.org/10.1029/2006GL028896, 2007. a
D'Amicis, R., Bruno, R., and Bavassano, B.: Response of the geomagnetic activity to solar wind turbulence during solar cycle 23, J. Atmos. Sol.-Terr. Phy., 73, 653–657, https://doi.org/10.1016/j.jastp.2011.01.012, 2011. a, b
D'Amicis, R., Bruno, R., Panasenco, O., Telloni, D., Perrone, D., Marcucci, M. F., Woodham, L., Velli, M., De Marco, R., Jagarlamudi, V., Coco, I., Owen, C., Louarn, P., Livi, S., Horbury, T., André, N., Angelini, V., Evans, V., Fedorov, A., Genot, V., Lavraud, B., Matteini, L., Müller, D., O'Brien, H., Pezzi, O., Rouillard, A. P., Sorriso-Valvo, L., Tenerani, A., Verscharen, D., and Zouganelis, I.: First Solar Orbiter observation of the Alfvénic slow wind and identification of its solar source, Astron. Astrophys., 656, A21, https://doi.org/10.1051/0004-6361/202140938, 2021. a, b
De Keyser, J., Roth, M., De Sterck, H., and Poedts, S.: A Survey of Field-Aligned Mach Number and Plasma Beta in the Solar Wind, Space Sci. Rev., 97, 201–204, https://doi.org/10.1023/A:1011827623142, 2001. a
Elsässer, W. M.: The Hydromagnetic Equations, Phys. Rev., 79, 183–183, https://doi.org/10.1103/PhysRev.79.183, 1950. a
Gary, G. A.: Plasma beta above a solar active region: Rethinking the paradigm, Sol. Phys., 203, 71–86, 2001. a
Gingell, I., Schwartz, S. J., Eastwood, J. P., Stawarz, J. E., Burch, J. L., Ergun, R. E., Fuselier, S. A., Gershman, D. J., Giles, B. L., Khotyaintsev, Y. V., Lavraud, B., Lindqvist, P. A., Paterson, W. R., Phan, T. D., Russell, C. T., Strangeway, R. J., Torbert, R. B., and Wilder, F.: Statistics of Reconnecting Current Sheets in the Transition Region of Earth's Bow Shock, J. Geophys. Res., 125, e27119, https://doi.org/10.1029/2019JA027119, 2020. a
Gingell, I., Schwartz, S. J., Kucharek, H., Farrugia, C. J., Fryer, L. J., Plank, J., and Trattner, K. J.: Hybrid simulations of the decay of reconnected structures downstream of the bow shock, Phys. Plasmas, 30, 012902, https://doi.org/10.1063/5.0129084, 2023. a
Goldstein, M. L.: An instability of finite amplitude circularly polarized Alfvén waves, Astrophys. J., 219, 700–704, 1978. a
Good, S. W., Hatakka, L. M., Ala-Lahti, M., Soljento, J. E., Osmane, A., and Kilpua, E. K. J.: Cross helicity of interplanetary coronal mass ejections at 1 au, Mon. Not. R. Astron. Soc., 514, 2425–2433, https://doi.org/10.1093/mnras/stac1388, 2022. a, b
Good, S. W., Rantala, O. K., Jylhä, A. S. M., Chen, C. H. K., Möstl, C., and Kilpua, E. K. J.: Turbulence Properties of Interplanetary Coronal Mass Ejections in the Inner Heliosphere: Dependence on Proton Beta and Flux Rope Structure, Astrophys. J. Lett., 956, L30, https://doi.org/10.3847/2041-8213/acfd1c, 2023. a
Hadid, L. Z., Sahraoui, F., Kiyani, K. H., Retinò, A., Modolo, R., Canu, P., Masters, A., and Dougherty, M. K.: Nature of the MHD and Kinetic Scale Turbulence in the Magnetosheath of Saturn: Cassini Observations, Astrophys. J., 813, L29, https://doi.org/10.1088/2041-8205/813/2/L29, 2015. a
Hollweg, J. V.: Nonlinear Landau Damping of Alfvén Waves, Phys. Rev. Lett., 27, 1349–1352, https://doi.org/10.1103/PhysRevLett.27.1349, 1971. a
Horbury, T. S., O'Brien, H., Carrasco Blazquez, I., Bendyk, M., Brown, P., Hudson, R., Evans, V., Oddy, T. M., Carr, C. M., Beek, T. J., Cupido, E., Bhattacharya, S., Dominguez, J. A., Matthews, L., Myklebust, V. R., Whiteside, B., Bale, S. D., Baumjohann, W., Burgess, D., Carbone, V., Cargill, P., Eastwood, J., Erdös, G., Fletcher, L., Forsyth, R., Giacalone, J., Glassmeier, K. H., Goldstein, M. L., Hoeksema, T., Lockwood, M., Magnes, W., Maksimovic, M., Marsch, E., Matthaeus, W. H., Murphy, N., Nakariakov, V. M., Owen, C. J., Owens, M., Rodriguez-Pacheco, J., Richter, I., Riley, P., Russell, C. T., Schwartz, S., Vainio, R., Velli, M., Vennerstrom, S., Walsh, R., Wimmer-Schweingruber, R. F., Zank, G., Müller, D., Zouganelis, I., and Walsh, A. P.: The Solar Orbiter magnetometer, Astron. Astrophys., 642, A9, https://doi.org/10.1051/0004-6361/201937257, 2020. a
Huang, S. Y., Hadid, L. Z., Sahraoui, F., Yuan, Z. G., and Deng, X. H.: On the Existence of the Kolmogorov Inertial Range in the Terrestrial Magnetosheath Turbulence, Astrophys. J. Lett., 836, L10, https://doi.org/10.3847/2041-8213/836/1/L10, 2017. a
Huang, S. Y., Wang, Q. Y., Sahraoui, F., Yuan, Z. G., Liu, Y. J., Deng, X. H., Sun, W. J., Jiang, K., Xu, S. B., Yu, X. D., Wei, Y. Y., and Zhang, J.: Analysis of Turbulence Properties in the Mercury Plasma Environment Using MESSENGER Observations, Astrophys. J., 891, 159, https://doi.org/10.3847/1538-4357/ab7349, 2020. a
Jian, L., Russell, C. T., Luhmann, J. G., and Skoug, R. M.: Properties of Stream Interactions at One AU During 1995 2004, Solar Phys., 239, 337–392, https://doi.org/10.1007/s11207-006-0132-3, 2006. a
Kilpua, E., Koskinen, H. E. J., and Pulkkinen, T. I.: Coronal mass ejections and their sheath regions in interplanetary space, Liv. Rev. Sol. Phys., 14, 5, https://doi.org/10.1007/s41116-017-0009-6, 2017. a
Kilpua, E., Vainio, R., Cohen, C., Dresing, N., Good, S., Ruohotie, J., Trotta, D., Bale, S. D., Christian, E., Hill, M., McComas, D. J., McNutt, R., and Schwadron, N.: Energetic ion enhancements in sheaths driven by interplanetary coronal mass ejections, Astrophys. Space Sci., 368, 66, https://doi.org/10.1007/s10509-023-04201-6, 2023. a
Kilpua, E. K. J., Lumme, E., Andreeova, K., Isavnin, A., and Koskinen, H. E. J.: Properties and drivers of fast interplanetary shocks near the orbit of the Earth (1995–2013), J. Geophys. Res., 120, 4112–4125, https://doi.org/10.1002/2015JA021138, 2015. a, b, c, d
Kilpua, E. K. J., Good, S. W., Ala-Lahti, M., Osmane, A., Fontaine, D., Hadid, L., Janvier, M., and Yordanova, E.: Statistical analysis of magnetic field fluctuations in CME-driven sheath regions, Frontiers in Astronomy and Space Sciences, 7, 109, https://doi.org/10.3389/fspas.2020.610278, 2021. a, b
Lee, M. A.: Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock, J. Geophys. Res., 87, 5063–5080, https://doi.org/10.1029/JA087iA07p05063, 1982. a
Lepping, R. P., Acũna, M. H., Burlaga, L. F., Farrell, W. M., Slavin, J. A., Schatten, K. H., Mariani, F., Ness, N. F., Neubauer, F. M., Whang, Y. C., Byrnes, J. B., Kennon, R. S., Panetta, P. V., Scheifele, J., and Worley, E. M.: The Wind Magnetic Field Investigation, Space Sci. Rev., 71, 207–229, https://doi.org/10.1007/BF00751330, 1995. a
Lin, R. P., Anderson, K. A., Ashford, S., Carlson, C., Curtis, D., Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G. K., Rème, H., Bosqued, J. M., Coutelier, J., Cotin, F., D'Uston, C., Wenzel, K. P., Sanderson, T. R., Henrion, J., Ronnet, J. C., and Paschmann, G.: A Three-Dimensional Plasma and Energetic Particle Investigation for the Wind Spacecraft, Space Sci. Rev., 71, 125–153, https://doi.org/10.1007/BF00751328, 1995. a
Matthaeus, W. H. and Goldstein, M. L.: Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind, J. Geophys. Res., 87, 6011–6028, https://doi.org/10.1029/JA087iA08p06011, 1982. a, b, c, d
Mullan, D. J. and Smith, C. W.: Solar Wind Statistics at 1 AU: Alfven Speed and Plasma Beta, Sol. Phys., 234, 325–338, https://doi.org/10.1007/s11207-006-2077-y, 2006. a
Müller, D., St. Cyr, O. C., Zouganelis, I., Gilbert, H. R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T. S., Howard, R. A., Krucker, S., Maksimovic, M., Owen, C. J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S. K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D. M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., del Toro Iniesta, J. C., Wimmer-Schweingruber, R. F., Marsch, E., Velli, M., De Groof, A., Walsh, A., and Williams, D.: The Solar Orbiter mission. Science overview, Astron. Astrophys., 642, A1, https://doi.org/10.1051/0004-6361/202038467, 2020. a
Nakanotani, M., Zank, G. P., and Zhao, L. L.: Interaction between Multiple Current Sheets and a Shock Wave: 2D Hybrid Kinetic Simulations, Astrophys. J., 922, 219, https://doi.org/10.3847/1538-4357/ac2e06, 2021. a
NASA Goddard Space Flight Center: Coordinated Data Analysis Web (CDAWeb), http://cdaweb.gsfc.nasa.gov/, last access: 28 July 2025. a
Odstrcil, D. and Karlicky, M.: Triggering of magnetic reconnection in the current sheet by shock waves, Astron. Astrophys., 326, 1252–1258, 1997. a
Ogilvie, K. W. and Desch, M. D.: The wind spacecraft and its early scientific results, Adv. Space Res., 20, 559–568, https://doi.org/10.1016/S0273-1177(97)00439-0, 1997. a
Owen, C. J., Bruno, R., Livi, S., Louarn, P., Al Janabi, K., Allegrini, F., Amoros, C., Baruah, R., Barthe, A., Berthomier, M., Bordon, S., Brockley-Blatt, C., Brysbaert, C., Capuano, G., Collier, M., DeMarco, R., Fedorov, A., Ford, J., Fortunato, V., Fratter, I., Galvin, A. B., Hancock, B., Heirtzler, D., Kataria, D., Kistler, L., Lepri, S. T., Lewis, G., Loeffler, C., Marty, W., Mathon, R., Mayall, A., Mele, G., Ogasawara, K., Orlandi, M., Pacros, A., Penou, E., Persyn, S., Petiot, M., Phillips, M., Přech, L., Raines, J. M., Reden, M., Rouillard, A. P., Rousseau, A., Rubiella, J., Seran, H., Spencer, A., Thomas, J. W., Trevino, J., Verscharen, D., Wurz, P., Alapide, A., Amoruso, L., André, N., Anekallu, C., Arciuli, V., Arnett, K. L., Ascolese, R., Bancroft, C., Bland, P., Brysch, M., Calvanese, R., Castronuovo, M., Čermák, I., Chornay, D., Clemens, S., Coker, J., Collinson, G., D'Amicis, R., Dandouras, I., Darnley, R., Davies, D., Davison, G., De Los Santos, A., Devoto, P., Dirks, G., Edlund, E., Fazakerley, A., Ferris, M., Frost, C., Fruit, G., Garat, C., Génot, V., Gibson, W., Gilbert, J. A., de Giosa, V., Gradone, S., Hailey, M., Horbury, T. S., Hunt, T., Jacquey, C., Johnson, M., Lavraud, B., Lawrenson, A., Leblanc, F., Lockhart, W., Maksimovic, M., Malpus, A., Marcucci, F., Mazelle, C., Monti, F., Myers, S., Nguyen, T., Rodriguez-Pacheco, J., Phillips, I., Popecki, M., Rees, K., Rogacki, S. A., Ruane, K., Rust, D., Salatti, M., Sauvaud, J. A., Stakhiv, M. O., Stange, J., Stubbs, T., Taylor, T., Techer, J. D., Terrier, G., Thibodeaux, R., Urdiales, C., Varsani, A., Walsh, A. P., Watson, G., Wheeler, P., Willis, G., Wimmer-Schweingruber, R. F., Winter, B., Yardley, J., and Zouganelis, I.: The Solar Orbiter Solar Wind Analyser (SWA) suite, Astron. Astrophys., 642, A16, https://doi.org/10.1051/0004-6361/201937259, 2020. a
Park, B., Pitňa, A., Šafránková, J., Němeček, Z., Krupařová, O., Krupař, V., Zhao, L., and Silwal, A.: Change of Spectral Properties of Magnetic Field Fluctuations across Different Types of Interplanetary Shocks, Astrophys. J., 954, L51, https://doi.org/10.3847/2041-8213/acf4ff, 2023. a
Parker, E. N.: Dynamics of the Interplanetary Gas and Magnetic Fields, Astrophys. J., 128, 664, https://doi.org/10.1086/146579, 1958. a
Perri, S. and Balogh, A.: Differences in solar wind cross-helicity and residual energy during the last two solar minima, Geophys. Res. Lett., 37, L17102, https://doi.org/10.1029/2010GL044570, 2010. a, b
Pitna, A., Zank, G. P., Nakanotani, M., Zhao, L. L., Adhikari, L., Safrankova, J., and Nemecek, Z.: Transmission of magnetic island modes across interplanetary shocks: comparison of theory and observations, in: Journal of Physics Conference Series, J. Phys. Conf. Ser., 2544, 012009, https://doi.org/10.1088/1742-6596/2544/1/012009, 2023. a
Pitňa, A., Šafránková, J., Němeček, Z., Goncharov, O., Němec, F., Přech, L., Chen, C. H. K., and Zastenker, G. N.: Density Fluctuations Upstream and Downstream of Interplanetary Shocks, Astrophys. J., 819, 41, https://doi.org/10.3847/0004-637X/819/1/41, 2016. a
Pitňa, A., Šafránková, J., Němeček, Z., Ďurovcová, T., and Kis, A.: Turbulence Upstream and Downstream of Interplanetary Shocks, Frontiers in Physics, 8, 654, https://doi.org/10.3389/fphy.2020.626768, 2021. a
Richardson, I. G.: Solar wind stream interaction regions throughout the heliosphere, Liv. Rev. Sol. Phys., 15, 1, https://doi.org/10.1007/s41116-017-0011-z, 2018. a
Roberts, D. A., Klein, L. W., Goldstein, M. L., and Matthaeus, W. H.: The nature and evolution of magnetohydrodynamic fluctuations in the solar wind: Voyager observations, J. Geophys. Res., 92, 11021–11040, https://doi.org/10.1029/JA092iA10p11021, 1987. a
Ruohotie, J., Kilpua, E. K. J., Good, S. W., and Ala-Lahti, M.: Small-scale flux ropes in ICME sheaths, Frontiers in Astronomy and Space Sciences, 9, 943247, https://doi.org/10.3389/fspas.2022.943247, 2022. a, b, c
Shi, C., Velli, M., Panasenco, O., Tenerani, A., Réville, V., Bale, S. D., Kasper, J., Korreck, K., Bonnell, J. W., Dudok de Wit, T., Malaspina, D. M., Goetz, K., Harvey, P. R., MacDowall, R. J., Pulupa, M., Case, A. W., Larson, D., Verniero, J. L., Livi, R., Stevens, M., Whittlesey, P., Maksimovic, M., and Moncuquet, M.: Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe, Astron. Astrophys., 650, A21, https://doi.org/10.1051/0004-6361/202039818, 2021. a
Sioulas, N., Huang, Z., Shi, C., Velli, M., Tenerani, A., Bowen, T. A., Bale, S. D., Huang, J., Vlahos, L., Woodham, L. D., Horbury, T. S., de Wit, T. D., Larson, D., Kasper, J., Owen, C. J., Stevens, M. L., Case, A., Pulupa, M., Malaspina, D. M., Bonnell, J. W., Livi, R., Goetz, K., Harvey, P. R., MacDowall, R. J., Maksimović, M., Louarn, P., and Fedorov, A.: Magnetic Field Spectral Evolution in the Inner Heliosphere, Astrophys. J. Lett., 943, L8, https://doi.org/10.3847/2041-8213/acaeff, 2023. a
Sishtla, C. P., Pomoell, J., Kilpua, E., Good, S., Daei, F., and Palmroth, M.: Flux-tube-dependent propagation of Alfvén waves in the solar corona, Astron. Astrophys., 661, A58, https://doi.org/10.1051/0004-6361/202142999, 2022. a
Sishtla, C. P., Pomoell, J., Vainio, R., Kilpua, E., and Good, S.: Modelling the interaction of Alfvénic fluctuations with coronal mass ejections in the low solar corona, Astron. Astrophys., 679, A54, https://doi.org/10.1051/0004-6361/202347250, 2023. a
Smith, C. W.: Magnetic helicity in the solar wind, Adv. Space Res., 32, 1971–1980, https://doi.org/10.1016/S0273-1177(03)90635-1, 2003. a
Snekvik, K., Tanskanen, E. I., and Kilpua, E. K. J.: An automated identification method for Alfvénic streams and their geoeffectiveness, J. Geophys. Res., 118, 5986–5998, https://doi.org/10.1002/jgra.50588, 2013. a
Squire, J., Schekochihin, A. A., and Quataert, E.: Amplitude limits and nonlinear damping of shear-Alfvén waves in high-beta low-collisionality plasmas, New J. Phys., 19, 055005, https://doi.org/10.1088/1367-2630/aa6bb1, 2017. a
Tomczyk, S. and McIntosh, S. W.: Time-Distance Seismology of the Solar Corona with CoMP, Astrophys. J., 697, 1384–1391, https://doi.org/10.1088/0004-637X/697/2/1384, 2009. a
Trotta, D., Pecora, F., Settino, A., Perrone, D., Hietala, H., Horbury, T., Matthaeus, W., Burgess, D., Servidio, S., and Valentini, F.: On the Transmission of Turbulent Structures across the Earth’s Bow Shock, Astrophys. J., 933, 167, https://doi.org/10.3847/1538-4357/ac7798, 2022. a
Trotta, D., Vuorinen, L., Hietala, H., Horbury, T., Dresing, N., Gieseler, J., Kouloumvakos, A., Price, D., Valentini, F., Kilpua, E., and Vainio, R.: Single-spacecraft techniques for shock parameters estimation: A systematic approach, Frontiers in Astronomy and Space Sciences, 9, 1005672, https://doi.org/10.3389/fspas.2022.1005672, 2022. a, b
Trotta, D., Pezzi, O., Burgess, D., Preisser, L., Blanco-Cano, X., Kajdic, P., Hietala, H., Horbury, T. S., Vainio, R., Dresing, N., Retinò, A., Marcucci, M. F., Sorriso-Valvo, L., Servidio, S., and Valentini, F.: Three-dimensional modelling of the shock–turbulence interaction, Mon. Not. R. Astron. Soc., 525, 1856–1866, https://doi.org/10.1093/mnras/stad2384, 2023. a
Trotta, D., Hietala, H., Dresing, N., Horbury, T., Kartavykh, Y., Gieseler, J., Jebaraj, I., Gómez-Herrero, R., Espinosa Lara, L., and Vainio, R.: Solar Orbiter Cycle 25 Interplanetary Shock List, Zenodo [data set], https://doi.org/10.5281/zenodo.12518015, 2024a. a
Trotta, D., Larosa, A., Nicolaou, G., Horbury, T. S., Matteini, L., Hietala, H., Blanco-Cano, X., Franci, L., Chen, C. H. K., Zhao, L., Zank, G. P., Cohen, C. M. S., Bale, S. D., Laker, R., Fargette, N., Valentini, F., Khotyaintsev, Y., Kieokaew, R., Raouafi, N., Davies, E., Vainio, R., Dresing, N., Kilpua, E., Karlsson, T., Owen, C. J., and Wimmer-Schweingruber, R. F.: Properties of an Interplanetary Shock Observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter, Astrophys. J., 962, 147, https://doi.org/10.3847/1538-4357/ad187d, 2024b. a
Vainio, R. and Schlickeiser, R.: Self-consistent Alfvén-wave transmission and test-particle acceleration at parallel shocks, Astron. Astrophys., 343, 303–311, 1999. a
Vainio, R. and Spanier, F.: Evolution of Alfvén waves by three-wave interactions in super-Alfvénic shocks, Astron. Astrophys., 437, 1–8, https://doi.org/10.1051/0004-6361:20042433, 2005. a
Verscharen, D., Klein, K. G., and Maruca, B. A.: The multi-scale nature of the solar wind, Living Rev. Sol. Phys., 16, 5, https://doi.org/10.1007/s41116-019-0021-0, 2019. a, b, c
Völk, H. J. and Cesarsky, C. J.: Nonlinear Landau damping of Alfvén waves in a high beta plasma, Zeitschrift Naturforschung Teil A, 37, 809–815, https://doi.org/10.1515/zna-1982-0814, 1982. a
Zank, G. P., Nakanotani, M., Zhao, L. L., Du, S., Adhikari, L., Che, H., and le Roux, J. A.: Flux Ropes, Turbulence, and Collisionless Perpendicular Shock Waves: High Plasma Beta Case, Astrophys. J., 913, 127, https://doi.org/10.3847/1538-4357/abf7c8, 2021. a, b
Zhao, L. L., Zank, G. P., He, J. S., Telloni, D., Hu, Q., Li, G., Nakanotani, M., Adhikari, L., Kilpua, E. K. J., Horbury, T. S., O'Brien, H., Evans, V., and Angelini, V.: Turbulence and wave transmission at an ICME-driven shock observed by the Solar Orbiter and Wind, Astron. Astrophys., 656, A3, https://doi.org/10.1051/0004-6361/202140450, 2021. a, b, c, d, e, f
Zheng, J. and Hu, Q.: Observational Evidence for Self-generation of Small-scale Magnetic Flux Ropes from Intermittent Solar Wind Turbulence, Astrophys. J. Lett., 852, L23, https://doi.org/10.3847/2041-8213/aaa3d7, 2018. a
Short summary
Interplanetary shock waves are one of the major forms of heliospheric transients that can have a profound impact on solar wind plasma and magnetic field conditions and accelerate charged particles to high energies. This work performs an extensive statistical analysis to detail how some of the key solar wind turbulence parameters, critical for understanding particle acceleration, are modified by the interplanetary shocks waves.
Interplanetary shock waves are one of the major forms of heliospheric transients that can have a...