Articles | Volume 43, issue 2
https://doi.org/10.5194/angeo-43-391-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-391-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diurnal, seasonal, and annual variations of the fair-weather atmospheric potential gradient and effects of reduced number concentration of condensation nuclei on potential gradient and air conductivity from long-term atmospheric electricity measurements at Świder, Poland
Institute of Geophysics, Polish Academy of Sciences, Ksiȩcia Janusza 64, 01-452 Warsaw, Poland
Anna Odzimek
Institute of Geophysics, Polish Academy of Sciences, Ksiȩcia Janusza 64, 01-452 Warsaw, Poland
Daniel Kȩpski
Institute of Geophysics, Polish Academy of Sciences, Ksiȩcia Janusza 64, 01-452 Warsaw, Poland
José Tacza
Institute of Geophysics, Polish Academy of Sciences, Ksiȩcia Janusza 64, 01-452 Warsaw, Poland
Related authors
Janusz W. Krzyścin, Agnieszka Czerwińska, Bonawentura Rajewska-Więch, Janusz Jarosławski, Piotr S. Sobolewski, and Izabela Pawlak
Earth Syst. Sci. Data, 17, 3757–3775, https://doi.org/10.5194/essd-17-3757-2025, https://doi.org/10.5194/essd-17-3757-2025, 2025
Short summary
Short summary
Time series (1976−2023) of biologically effective (for skin redness, vitamin D3 production, and psoriasis healing) daily radiant exposure (RE) at Belsk from standard erythemal biometers are examined. Comparisons of the measured data for cloudless days with values from a radiation transfer model provide a basis for data homogenisation. Averaged results from different versions of the recalculated data give the 1976−2004 trend of about 6 % per 10 years in annual RE for all biological effects.
Janusz W. Krzyścin, Agnieszka Czerwińska, Bonawentura Rajewska-Więch, Janusz Jarosławski, Piotr S. Sobolewski, and Izabela Pawlak
Earth Syst. Sci. Data, 17, 3757–3775, https://doi.org/10.5194/essd-17-3757-2025, https://doi.org/10.5194/essd-17-3757-2025, 2025
Short summary
Short summary
Time series (1976−2023) of biologically effective (for skin redness, vitamin D3 production, and psoriasis healing) daily radiant exposure (RE) at Belsk from standard erythemal biometers are examined. Comparisons of the measured data for cloudless days with values from a radiation transfer model provide a basis for data homogenisation. Averaged results from different versions of the recalculated data give the 1976−2004 trend of about 6 % per 10 years in annual RE for all biological effects.
Laura Köhler, Julia Windmiller, Dariusz Baranowski, Michał Brennek, Michał Ciuryło, Lennéa Hayo, Daniel Kȩpski, Stefan Kinne, Beata Latos, Bertrand Lobo, Tobias Marke, Timo Nischik, Daria Paul, Piet Stammes, Artur Szkop, and Olaf Tuinder
Earth Syst. Sci. Data, 17, 633–659, https://doi.org/10.5194/essd-17-633-2025, https://doi.org/10.5194/essd-17-633-2025, 2025
Short summary
Short summary
We present atmospheric and oceanic data from the Atlantic References and Convection ship campaign with the Maria S. Merian from Mindelo to Punta Arenas observed with the integrated ship sensors; humidity and temperature profiler; ceilometer; aerosol instruments (Calitoo, Microtops, and DustTrak); radiosondes; uncrewed aircraft vehicles; and conductivity, temperature, and depth scans. The data include three complete profiles of the Intertropical Convergence Zone and a storm in the South Atlantic.
Elena Barbaro, Krystyna Koziol, Mats P. Björkman, Carmen P. Vega, Christian Zdanowicz, Tonu Martma, Jean-Charles Gallet, Daniel Kępski, Catherine Larose, Bartłomiej Luks, Florian Tolle, Thomas V. Schuler, Aleksander Uszczyk, and Andrea Spolaor
Atmos. Chem. Phys., 21, 3163–3180, https://doi.org/10.5194/acp-21-3163-2021, https://doi.org/10.5194/acp-21-3163-2021, 2021
Short summary
Short summary
This paper shows the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on 7 glaciers across Svalbard. The dataset consists of the concentration, mass loading, spatial and altitudinal distribution of major ion species (Ca2+, K+,
Na2+, Mg2+,
NH4+, SO42−,
Br−, Cl− and
NO3−), together with its stable oxygen and hydrogen isotope composition (δ18O and
δ2H) in the snowpack. This study was part of the larger Community Coordinated Snow Study in Svalbard.
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Atmospheric electricity
Revisiting the long-term decreasing trend of atmospheric electric potential gradient measured at Nagycenk, Hungary, Central Europe
Attila Buzás, Veronika Barta, Tamás Horváth, and József Bór
Ann. Geophys., 39, 627–640, https://doi.org/10.5194/angeo-39-627-2021, https://doi.org/10.5194/angeo-39-627-2021, 2021
Short summary
Short summary
Based on on-site measurements and numerical modelling, we eliminated the electrostatic shielding effect of nearby trees from the atmospheric electric potential gradient (PG) time series recorded at Nagycenk, Hungary, Central Europe, revealing their actual variation between 1962 and 2009. The comparison with PG data from another station in the same region implies that there may have been coherent regional changes in Earth’s atmospheric electric field during the investigated time period.
Cited articles
Adlerman, E. J. and Williams, E. R.: Seasonal variation of the global electrical circuit, J. Geophys. Res.-Atmos., 101, 29679–29688, https://doi.org/10.1029/96JD01547, 1996. a, b, c
Bennett, A. J. and Harrison, R. G.: Variability in surface atmospheric electric field measurements, J. Phys. Conf. Ser., 142, 012046, https://doi.org/10.1088/1742-6596/142/1/012046, 2008. a
Burns, G. B., Frank-Kamenetsky, A. V., Tinsley, B. A., French, W. J. R., Grigioni, P., Camporeale, G., and Bering, E. A.: Atmospheric Global Circuit Variations from Vostok and Concordia Electric Field Measurements, J. Atmos. Sci., 74, 783–800, https://doi.org/10.1175/JAS-D-16-0159.1, 2017. a
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., and Steward, D. F.: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res.-Atmos., 108, ACL 4-1–ACL 4-15, https://doi.org/10.1029/2002JD002347, 2003. a
GIOŚ: Hourly averaged PM10 data, 2005–2015, station: Otwock, ul. Brzozowa 2, Bank danych pomiarowych, Główny Inspektorat Ochrony Środowiska (Chief Inspectorate for Environmental Protection), https://powietrze.gios.gov.pl/pjp/archives, last access: 15 March 2025. a
Haberka, Z.: Zapylenie powietrza w Świdrze, Travaux de l’Observatoire Géophysique de St. Kalinowski à Świder, 20, 54–60, 1961. a
Harrison, R.: Urban smoke concentrations at Kew, London, 1898–2004, Atmos. Environ., 40, 3327–3332, https://doi.org/10.1016/j.atmosenv.2006.01.042, 2006. a
Harrison, R. and Aplin, K.: Mid-nineteenth century smoke concentrations near London, Atmos. Environ., 36, 4037–4043, https://doi.org/10.1016/S1352-2310(02)00334-5, 2002. a, b
Harrison, R. G.: The Carnegie Curve, Surv. Geophys., 34, 209–232, https://doi.org/10.1007/s10712-012-9210-2, 2013. a
Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and Clouds: The Software Package OPAC, B. Am. Meteorol. Soc., 79, 831–844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998. a
Hoffmann, K.: Bericht uber die in Ebeltofthafen auf Spitsbergen in der Jahren 1913/14 durchgefurten luftelektrischen Messungen (11 36′ 15′′ E, 79 09′ 14′′ N), Beitr. Phys. Frei. Atmos., 11, 1–19, Report the Atmospheric Electric Measurements Performed in 1913/14 in Ebeltolthafen in Spitsberegen (11 36′ 15′′ E, 79 09′ 14′′ N), 1924. a
Imyanitov, I. M. and Chubarina, Y. V.: Electricity of free atmosphere, Gidrometeoizdat, Leningrad, 1965, Technical Translation from Russian, NASA, Washington, TT F-425, https://archive.org/details/nasa_techdoc_19680000611 (last access: 8 July 2025), 1967. a
Israël, H.: Atmospheric Electricity, vol. II, Fields, Charges, Currents, Israel Program for Scientific Translations, Jerusalem, ISBN 978-0706511291, 1973b. a
Junge, C.: Nuclei of Atmospheric Condensation, in: Compendium of Meteorology, edited by: Byers, H. R., American Meteorological Society, 182–191, ISBN 978-1-940033-70-9, https://doi.org/10.1007/978-1-940033-70-9_15, 1951. a
Kalinowska, Z.: Historia powstania i działalności Obserwatorium Geofizycznego w Świdrze w latach 1910–1960, Ksiȩga Jubileuszowa 1910–1960, Prace Obs. Geof. Świder, 23, 54–60, 1962. a
Kalinowski, S.: Uber die Registrierung des zeitlichen Ganges des luftelektrischen Potentials in Świder, Acta Phys. Pol., 1, 499–502, 1932. a
Karasiński, G. and Kubicki, M.: Aerosol number concentration during Hornsund-Gdynia cruise in September 2013, V1, IG PAS Data Portal [data set], https://doi.org/10.25171/InstGeoph_PAS_IGData_Aerosol_ number_concentration_during_Hornsund_Gdynia_cruise_in_ September_2013, 2024. a
Kępski, D.: Aerosol concentration in vertical profile (0.02–1 µm), Hornsund, spring 2021, V1, IG PAS Data Portal [data set], https://doi.org/10.25171/InstGeoph_PAS_IGData_AVSEEFI _2021_011, 2021.
Kubicki, M., Michnowski, S., Myslek-Laurikainen, B., and Warzecha, S.: Long term variations of some atmospheric electricity, aerosol, and extraterrestrial parameters at Swider Observatory, Poland, in: Proceedings of the 12th International Conference on Atmospheric Electricity, Versailles, France, 9–13 June 2003, Vol. 1, 291–294, ISBN 2-7257-0008-6, 2003. a
Kubicki, M., Michnowski, S., and Myslek-Laurikainen, B.: Seasonal and daily variations of atmospheric electricity parameters registered at the Geophysical Observatory at Świder (Poland) during 1965–2000, in: Proceedings of the 13th International Conference on Atmospheric Electricity, Beijing, China, 13–17 August 2007, International Commission on Atmospheric Electricity, vol. I, 50–53., 2007. a, b, c, d
Kulkarni, N. M.: Non-conventional approach to computation of the atmospheric global electric parameters: Resultant data and analysis, J. Earth Syst. Sci., 131, 247, https://doi.org/10.1007/s12040-022-01981-3, 2022. a
Makino, M. and Ogawa, T.: Quantitative estimation of global circuit, J. Geophys. Res., 90, 5961–5966, https://doi.org/10.1029/JD090iD04p05961, 1985. a, b
Mani, A. and Huddar, B.: Studies of surface aerosols and their effects on atmospheric electric parameters, Pure Appl. Geophys., 100, 154–166, https://doi.org/10.1007/BF00880236, 1972. a
Märcz, F., Sátori, G., and Zieger, B.: Variations in Schumann resonances and their relation to atmospheric electric parameters at Nagycenk station, Ann. Geophys., 15, 1604–1614, https://doi.org/10.1007/s00585-997-1604-y, 1997. a, b
Matthews, J., Wright, M., Clarke, D., Morley, E., Silva, H., Bennett, A., Robert, D., and Shallcross, D.: Urban and rural measurements of atmospheric potential gradient, J. Electrostat., 97, 42–50, https://doi.org/10.1016/j.elstat.2018.11.006, 2019. a
McMurry, P. H.: The History of Condensation Nucleus Counters, Aerosol Sci. Tech., 33, 297–322, https://doi.org/10.1080/02786820050121512, 2000. a
Michnowski, S., Odzimek, A., Kleimenova, N. G., Kozyreva, O. V., Kubicki, M., Klos, Z., Israelsson, S., and Nikiforova, N. N.: Review of Relationships Between Solar Wind and Ground-Level Atmospheric Electricity: Case Studies from Hornsund, Spitsbergen, and Swider, Poland, Surv. Geophys., 42, 757–801, https://doi.org/10.1007/s10712-021-09639-3, 2021. a, b, c, d
Miller, S. and Bodhaine, B.: Supersaturation and expansion ratios in condensation nuclei counters: an historical perspective, J. Aerosol Sci., 13, 481–490, https://doi.org/10.1016/0021-8502(82)90014-3, 1982. a
Mohnen, V. and Hidy, G. M.: Measurements of Atmospheric Nanoparticles (1875–1980), B. Am. Meteorol. Soc., 91, 1525–1540, https://doi.org/10.1175/2010BAMS2929.1, 2010. a
Nicoll, K., Harrison, R., Barta, V., Bor, J., Brugge, R., Chillingarian, A., Chum, J., Georgoulias, A., Guha, A., Kourtidis, K., Kubicki, M., Mareev, E., Matthews, J., Mkrtchyan, H., Odzimek, A., Raulin, J.-P., Robert, D., Silva, H., Tacza, J., Yair, Y., and Yaniv, R.: A global atmospheric electricity monitoring network for climate and geophysical research, J. Atmos. Sol.-Terr. Phy., 184, 18–29, https://doi.org/10.1016/j.jastp.2019.01.003, 2019. a, b, c, d, e, f, g
Odzimek, A. and Pawlak, I.: Supporting data for: Diurnal, seasonal and annual variations of fair weather atmospheric potential gradient, and effects of reduced number concentration of condensation nuclei on PG and air conductivity from long term atmospheric electricity measurements at Swider, Poland, IG PAS Data Portal [data set], https://doi.org/10.25171/InstGeoph_PAS_IGData_supporting-data-for-doi-10-5194-angeo-2024-1, 2025. a
Odzimek, A., Baranski, P., Kubicki, M., and Jasinkiewicz, D.: Electrical signatures of Nimbostratus and Stratus clouds in ground-level vertical atmospheric electric field and current density at mid-latitude station Swider, Poland, Atmos. Res., 209, 188–203, https://doi.org/10.1016/j.atmosres.2018.03.018, 2018. a, b
Parkinson, W. L. and Torreson, O. W.: The diurnal variation of the electric potential of the atmosphere over the oceans, Union Terr. Magn. Electr. Bull., 8, 340–341, 1931. a
Pietruczuk, A. and Jarosławski, J.: Analysis of particulate matter concentrations in Mazovia region, Central Poland, based on 2007–2010 data, Acta Geophys., 61, 445–462, https://doi.org/10.2478/s11600-012-0069-x, 2013. a, b
Podzimek, J., J. C., C., and Yue, P.: Comparison of several Aitken nuclei counters, Atmos. Environ., 16, 1–11, https://doi.org/10.1016/0004-6981(82)90309-2, 1982. a
Rycroft, M. J., Israelsson, S., and Price, C.: The global atmospheric electric circuit, solar activity and climate change, J. Atmos. Sol.-Terr. Phy., 62, 1563–1576, https://doi.org/10.1016/S1364-6826(00)00112-7, 2000. a
Ryś, A. and Samek, L.: Yearly Variations of Equivalent Black Carbon Concentrations Observed in Krakow, Poland, Atmosphere, 13, 539, https://doi.org/10.3390/atmos13040539, 2022. a
Sapkota, B. K. and Varshneya, N. C.: On the global atmospheric electric circuit, J. Atmos. Terr. Phys., 52, 1–22, https://doi.org/10.1016/0021-9169(90)90110-9, 1990. a, b, c
Shatalina, M. V., Mareev, E. A., Klimenko, V. V., Kuterin, F. A., and Nicoll, K. A.: Experimental Study of Diurnal and Seasonal Variations in the Atmospheric Electric Field, Radiophys. Quantum. El., 62, 183–191, https://doi.org/10.1007/s11141-019-09966-x, 2019. a
Swider, W.: Ionic mobility, mean mass, and conductivity in the middle atmosphere from near ground level to 70 km, Radio Sci., 23, 389–399, https://doi.org/10.1029/RS023i003p00389, 1988. a
Tacza, J., Raulin, J.-P., Macotela, E., Marun, A., Fernandez, G., Bertoni, F., Lima, L., Samanes, J., Buleje, Y., Correia, E., Alves, G., and Makita, K.: Local and global effects on the diurnal variation of the atmospheric electric field in South America by comparison with the Carnegie curve, Atmos. Res., 240, 104938, https://doi.org/10.1016/j.atmosres.2020.104938, 2020. a
Tacza, J., Raulin, J. P., Morales, C. A., Macotela, E., Marun, A., and Fernandez, G.: Analysis of long-term potential gradient variations measured in the Argentinian Andes, Atmos. Res., 248, 105200, https://doi.org/10.1016/j.atmosres.2020.105200, 2021. a
Tinsley, B. A. and Zhou, L.: Initial results of a global circuit model with variable stratospheric and tropospheric aerosols, J. Geophys. Res.-Atmos., 111, D16205, https://doi.org/10.1029/2005JD006988, 2006. a, b, c
Warzecha, S.: Wpływ czynników meteorologicznych na koncentracjȩ atmosferycznych jąder kondensacji w Świdrze, PhD thesis, Institute of Geophysics Polish Academy of Sciences, 150 pp., 1974. a
Warzecha, S.: Variations of the Electric Field and air conductivity at Swider in the years 1958–1985, Publs. Inst. Geophys. Pol. Acad. Sci., 238, 193 pp., 1991. a
Warzecha, S. and Warzechowa, K.: Wyniki pomiarów stȩżenia atmosferycznych jąder kondensacji w przybrzeżnej strefie morza w Lubiatowie, Archive of the Institute of Geophysics Polish Academy of Sciences, Institute of Geophysics Polish Academy of Sciences, 37 pp., 1979. a
Williams, E. R.: The global electrical circuit: A review, Atmos. Res., 91, 140–152, https://doi.org/10.1016/j.atmosres.2008.05.018, 2009. a
Wilson, C.: Condensation of Water Vapour in the Presence of Dust-Free Air and Other Gases, Philos. T. R. Soc. Lond., 189, 265–307, 1897. a
Witkowski, A.: Note sur l'électricité atmosphérique à Zakopane dans les Tatras (Polish title: Spostrzeżenia nad elektrycznością atmosferyczną w Zakopanem), Bull. Acad. Sci. Cracovie A, 42, 7–10, 1902. a
Wright, M., Matthews, J., Silva, H., Bacak, A., Percival, C., and Shallcross, D.: The relationship between aerosol concentration and atmospheric potential gradient in urban environments, Sci. Total Environ., 716, 134959, https://doi.org/10.1016/j.scitotenv.2019.134959, 2020. a
Short summary
The electric state of the Earth’s atmosphere is manifested in the surface electric potential gradient (PG). In fair weather the PG should follow the variation of the global source of electric current in the atmosphere, called the global electric circuit. The PG is also influenced by local conditions. We use long-term series of PG and analyse PG variations during conditions of low aerosol concentrations to minimise the aerosol influence on PG obscuring its change due to the global source.
The electric state of the Earth’s atmosphere is manifested in the surface electric potential...