Articles | Volume 42, issue 1
https://doi.org/10.5194/angeo-42-229-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-42-229-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Does high-latitude ionospheric electrodynamics exhibit hemispheric mirror symmetry?
Department of Physics and Technology, University of Bergen, Bergen, Norway
Heikki Vanhamäki
Space Physics and Astronomy Research Unit, University of Oulu, Oulu, Finland
Karl Magnus Laundal
Department of Physics and Technology, University of Bergen, Bergen, Norway
Jone Peter Reistad
Department of Physics and Technology, University of Bergen, Bergen, Norway
Johnathan K. Burchill
Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
Levan Lomidze
Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
David J. Knudsen
Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
Michael Madelaire
Department of Physics and Technology, University of Bergen, Bergen, Norway
Habtamu Tesfaw
Space Physics and Astronomy Research Unit, University of Oulu, Oulu, Finland
Related authors
Karl M. Laundal, Andreas S. Skeidsvoll, Beatrice Popescu Braileanu, Spencer M. Hatch, Nils Olsen, and Heikki Vanhamäki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2051, https://doi.org/10.5194/egusphere-2025-2051, 2025
Short summary
Short summary
The ionosphere is where Earth’s atmosphere overlaps with a gas of charged particles in space. There, collisions with neutral air and electromagnetic forces driven by the solar wind control plasma motion. We created a global model that includes magnetic induction, explaining how electric currents and fields are altered, offering a more accurate view of atmosphere–space coupling than conventional models based on electric circuits.
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394, https://doi.org/10.5194/egusphere-2025-2394, 2025
Short summary
Short summary
Key properties of the ionospheric electrodynamics are electric fields, currents, and conductances. They provide a window to the vast and distant near-Earth space, cause Joule heating that affect satellite orbits, and drive geomagnetically induced currents (GICs) in technological conductor networks. We have developed a new method for solving the key properties of ionospheric electrodynamics from ground-based magnetic field observations.
Spencer Mark Hatch, Ilkka Virtanen, Karl Magnus Laundal, Habtamu Wubie Tesfaw, Juha Vierinen, Devin Ray Huyghebaert, Andres Spicher, and Jens Christian Hessen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1768, https://doi.org/10.5194/egusphere-2025-1768, 2025
Short summary
Short summary
This study addresses the design of next-generation incoherent scatter radar experiments used to study the ionosphere, particularly with systems that have multiple sites. We have developed a method to estimate uncertainties of measurements of plasma density, temperature, and ion drift. Our method is open-source, and helps to optimize radar configurations and assess the effectiveness of an experiment. This method ultimately serves to enhance our understanding of Earth's space environment.
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer M. Hatch, and Karl M. Laundal
Ann. Geophys., 43, 99–113, https://doi.org/10.5194/angeo-43-99-2025, https://doi.org/10.5194/angeo-43-99-2025, 2025
Short summary
Short summary
The EISCAT_3D radar is a new ionospheric radar under construction in the Fennoscandia region. The radar will make measurements of plasma characteristics at altitudes above approximately 60 km. The capability of the system to make these measurements at spatial scales of less than 100 m using multiple digitised signals from each of the radar antenna panels is highlighted. There are many ionospheric small-scale processes that will be further resolved using the techniques discussed here.
Karl M. Laundal, Andreas S. Skeidsvoll, Beatrice Popescu Braileanu, Spencer M. Hatch, Nils Olsen, and Heikki Vanhamäki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2051, https://doi.org/10.5194/egusphere-2025-2051, 2025
Short summary
Short summary
The ionosphere is where Earth’s atmosphere overlaps with a gas of charged particles in space. There, collisions with neutral air and electromagnetic forces driven by the solar wind control plasma motion. We created a global model that includes magnetic induction, explaining how electric currents and fields are altered, offering a more accurate view of atmosphere–space coupling than conventional models based on electric circuits.
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394, https://doi.org/10.5194/egusphere-2025-2394, 2025
Short summary
Short summary
Key properties of the ionospheric electrodynamics are electric fields, currents, and conductances. They provide a window to the vast and distant near-Earth space, cause Joule heating that affect satellite orbits, and drive geomagnetically induced currents (GICs) in technological conductor networks. We have developed a new method for solving the key properties of ionospheric electrodynamics from ground-based magnetic field observations.
Liisa Juusola, Heikki Vanhamäki, Elena Marshalko, Mikhail Kruglyakov, and Ari Viljanen
Ann. Geophys., 43, 271–301, https://doi.org/10.5194/angeo-43-271-2025, https://doi.org/10.5194/angeo-43-271-2025, 2025
Short summary
Short summary
Interaction between the magnetic field of the rapidly varying electric currents in space and the conducting ground produces an electric field at the Earth's surface. This geoelectric field drives geomagnetically induced currents in technological conductor networks, which can affect the performance of critical ground infrastructure such as electric power transmission grids. We have developed a new method suitable for monitoring the geoelectric field based on ground magnetic field observations.
Spencer Mark Hatch, Ilkka Virtanen, Karl Magnus Laundal, Habtamu Wubie Tesfaw, Juha Vierinen, Devin Ray Huyghebaert, Andres Spicher, and Jens Christian Hessen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1768, https://doi.org/10.5194/egusphere-2025-1768, 2025
Short summary
Short summary
This study addresses the design of next-generation incoherent scatter radar experiments used to study the ionosphere, particularly with systems that have multiple sites. We have developed a method to estimate uncertainties of measurements of plasma density, temperature, and ion drift. Our method is open-source, and helps to optimize radar configurations and assess the effectiveness of an experiment. This method ultimately serves to enhance our understanding of Earth's space environment.
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer M. Hatch, and Karl M. Laundal
Ann. Geophys., 43, 99–113, https://doi.org/10.5194/angeo-43-99-2025, https://doi.org/10.5194/angeo-43-99-2025, 2025
Short summary
Short summary
The EISCAT_3D radar is a new ionospheric radar under construction in the Fennoscandia region. The radar will make measurements of plasma characteristics at altitudes above approximately 60 km. The capability of the system to make these measurements at spatial scales of less than 100 m using multiple digitised signals from each of the radar antenna panels is highlighted. There are many ionospheric small-scale processes that will be further resolved using the techniques discussed here.
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Short summary
At times when auroras erupt on the sky, the magnetic field surrounding the Earth undergoes rapid changes. On the ground, these changes can induce harmful electric currents in technological conductor networks, such as powerlines. We have used magnetic field observations from northern Europe during 28 such events and found consistent behavior that can help to understand, and thus predict, the processes that drive auroras and geomagnetically induced currents.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Liisa Juusola, Heikki Vanhamäki, Ari Viljanen, and Maxim Smirnov
Ann. Geophys., 38, 983–998, https://doi.org/10.5194/angeo-38-983-2020, https://doi.org/10.5194/angeo-38-983-2020, 2020
Short summary
Short summary
Rapid variations of the magnetic field measured on the ground can be used to estimate space weather risks to power grids, but forecasting the variations remains a challenge. We show that part of this problem stems from the fact that, in addition to electric currents in space, the magnetic field variations are strongly affected by underground electric currents. We suggest that separating the measured field into its space and underground parts could improve our understanding of space weather.
Cited articles
Ahn, B., Richmond, A. D., Kamide, Y., Kroehl, H. W., Emery, B. A., de la Beaujardiére, O., and Akasofu, S.: An ionospheric conductance model based on ground magnetic disturbance data, J. Geophys. Re.-Space, 103, 14769–14780, https://doi.org/10.1029/97JA03088, 1998. a, b
Amm, O.: The elementary current method for calculating ionospheric current systems from multisatellite and ground magnetometer data, J. Geophys. Res.-Space, 106, 24843–24855, https://doi.org/10.1029/2001JA900021, 2001. a
Billett, D. D., Grocott, A., Wild, J. A., Walach, M.-T., and Kosch, M. J.: Diurnal Variations in Global Joule Heating Morphology and Magnitude Due To Neutral Winds, J. Geophys. Res.-Space, 123, 2398–2411, https://doi.org/10.1002/2017JA025141, 2018. a
Billett, D. D., McWilliams, K. A., Perry, G. W., Clausen, L. B. N., and Anderson, B. J.: Ionospheric Energy Input in Response to Changes in Solar Wind Driving: Statistics From the SuperDARN and AMPERE Campaigns, J. Geophys. Res.-Space, 127, e2021JA030102, https://doi.org/10.1029/2021JA030102, 2022. a
Burchill, J. K. and Knudsen, D. J.: EFI TII Cross-Track Flow Data Release Notes, Rev. 7, Tech. Rep., Swarm DISC, https://earth.esa.int/eogateway/ (last access: 4 December 2023), 2020. a
Burchill, J. K. and Knudsen, D. J.: Swarm Thermal Ion Imager measurement performance, Earth Planet. Space, 74, 181, https://doi.org/10.1186/s40623-022-01736-w, 2022. a, b
Cai, L., Aikio, A. T., and Nygrén, T.: Height-dependent energy exchange rates in the high-latitude E region ionosphere, J. Geophys. Res.-Space, 118, 7369–7383, https://doi.org/10.1002/2013JA019195, 2013. a
Cai, L., Aikio, A. T., and Milan, S. E.: Joule heating hot spot at high latitudes in the afternoon sector, J. Geophys. Res.-Space, 121, 7135–7152, https://doi.org/10.1002/2016JA022432, 2016. a
Cosgrove, R. B., Bahcivan, H., Chen, S., Sanchez, E., and Knipp, D.: Violation of Hemispheric Symmetry in Integrated Poynting Flux via an Empirical Model, Geophys. Res. Lett., 49, e2021GL097329, https://doi.org/10.1029/2021GL097329, 2022. a, b
Emmert, J. T., Richmond, A. D., and Drob, D. P.: A computationally compact representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth base vectors, J. Geophys. Res.-Space, 115, A08322, https://doi.org/10.1029/2010JA015326, nULL, 2010. a
European Space Agency: Swarm TII 2 Hz cross-track dataset, European Space Agency [data set], https://swarm-diss.eo.esa.int/#swarm/Advanced/Plasma_Data/2Hz_TII_Cross-track_Dataset, last access: 3 August 2023. a
Friis-Christensen, E., Kamide, Y., Richmond, A. D., and Matsushita, S.: Interplanetary magnetic field control of high-latitude electric fields and currents determined from Greenland Magnetometer Data, J. Geophys. Res.-Space, 90, 1325–1338, https://doi.org/10.1029/JA090iA02p01325, 1985. a
Hardy, D. A., Gussenhoven, M. S., Raistrick, R., and McNeil, W. J.: Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity, J. Geophys. Res., 92, 12275, https://doi.org/10.1029/JA092iA11p12275, 1987. a, b
Hatch, S. M.: pySwipe: Python implementation of Swarm Ionospheric Polar Electrodynamics empirical model, Zenodo [code], https://doi.org/10.5281/zenodo.10148940, 2023. a
Hatch, S. M. and Laundal, K. M.: python implementation of the Swipe model (pySwipe), Zenodo [code], https://doi.org/10.5281/zenodo.10148940, https://github.com/Dartspacephysiker/pyswipe (last access: 4 December 2023), 2023a. a, b
Hatch, S. M. and Laundal, K. M.: Swarm Hi-C inversion toolkit, Zenodo [code], https://doi.org/10.5281/zenodo.10245816, https://github.com/Dartspacephysiker/swarm_hi-c_inversion (last access: 4 December 2023), 2023b. a, b
Hatch, S. M., LaBelle, J., and Chaston, C.: Storm phase–partitioned rates and budgets of global Alfvénic energy deposition, electron precipitation, and ion outflow, J. Atmos. Sol.-Terr. Phys., 167, 1–12, https://doi.org/10.1016/j.jastp.2017.08.009, 2018. a
Hatch, S. M., Laundal, K. M., and Reistad, J. P.: Testing the mirror symmetry of Birkeland and ionospheric currents with respect to magnetic latitude, dipole tilt angle, and IMF By, Front. Astron. Space Sci., 9, 958977, https://doi.org/10.3389/fspas.2022.958977, 2022. a, b
Heelis, R. and Maute, A.: Challenges to Understanding the Earth's Ionosphere and Thermosphere, J. Geophys. Res.-Space, 125, e2019JA027497, https://doi.org/10.1029/2019JA027497, 2020. a
Knipp, D., Kilcommons, L., Hairston, M., and Coley, W. R.: Hemispheric Asymmetries in Poynting Flux Derived From DMSP Spacecraft, Geophys. Res. Lett., 48, e2021GL094781, https://doi.org/10.1029/2021GL094781, 2021. a
Larsen, M. F.: Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements, J. Geophys. Res.-Space, 107, SIA 28-1–SIA 28-14, https://doi.org/10.1029/2001JA000218, 2002. a
Laundal, K. M. and Richmond, A. D.: Magnetic Coordinate Systems, Space Sci. Rev., 206, 27–59, https://doi.org/10.1007/s11214-016-0275-y, 2017. a, b
Laundal, K. M., Finlay, C. C., and Olsen, N.: Sunlight effects on the 3D polar current system determined from low Earth orbit measurements, Earth Planet. Space, 68, 142, https://doi.org/10.1186/s40623-016-0518-x, 2016. a
Laundal, K. M., Cnossen, I., Milan, S. E., Haaland, S. E., Coxon, J., Pedatella, N. M., Förster, M., and Reistad, J. P.: North-South asymmetries in Earth's magnetic field - Effects on high-latitude geospace, Space Sci. Rev., 206, 225–257, https://doi.org/10.1007/s11214-016-0273-0, 2017. a
Lomidze, L., Burchill, J. K., Knudsen, D. J., Kouznetsov, A., and Weimer, D. R.: Validity Study of the Swarm Horizontal Cross-Track Ion Drift Velocities in the High-Latitude Ionosphere, Earth Space Sci., 6, 411–432, https://doi.org/10.1029/2018EA000546, https://doi.org/10.1029/2018EA000546, 2019. a
Lomidze, L., Burchill, J. K., Knudsen, D. J., and Huba, J. D.: Estimation of Ion Temperature in the Upper Ionosphere Along the Swarm Satellite Orbits, Earth Space Sci., 8, e2021EA001925, https://doi.org/10.1029/2021EA001925, 2021. a, b, c, d
Lowes, F. J.: Mean-square values on sphere of spherical harmonic vector fields, J. Geophys. Res., 71, 2179–2179, https://doi.org/10.1029/JZ071i008p02179, 1966. a
Madelaire, M., Laundal, K., Gjerloev, J., Hatch, S., Reistad, J., Vanhamäki, H., Waters, C., Ohma, A., Mesquita, R., and Merkin, V.: Spatial Resolution in Inverse Problems: The EZIE satellite mission, J. Geophys. Res.-Space, 128, e2023JA031394, https://doi.org/10.1029/2023JA031394, 2023. a
Mannucci, A. J., McGranaghan, R., Meng, X., and Verkhoglyadova, O. P.: An Analysis of Magnetosphere-Ionosphere Coupling That Is Independent of Inertial Reference Frame, J. Geophys. Res.-Space, 127, e2021JA030009, https://doi.org/10.1029/2021JA030009, 2022. a, b, c
Matsuo, T. and Richmond, A. D.: Effects of high-latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate, J. Geophys. Res.-Space, 113, A07309, https://doi.org/10.1029/2007JA012993, 2008. a
McGranaghan, R., Knipp, D. J., Matsuo, T., Godinez, H., Redmon, R. J., Solomon, S. C., and Morley, S. K.: Modes of high-latitude auroral conductance variability derived from DMSP energetic electron precipitation observations: Empirical orthogonal function analysis, J. Geophys. Res.-Space, 120, 1111–1331, https://doi.org/10.1002/2015JA021828, 2015. a
NASA/Goddard Space Flight Center, Space Physics Data Facility: https://omniweb.gsfc.nasa.gov/form/dx1.html [data set], last access: 3 August 2023. a
National Research Council Canada: Penticton Solar Radio Flux at 10.7 cm, LISIRD [data set], https://lasp.colorado.edu/lisird/data/penticton_radio_flux, last access: 3 August 2023. a
Newell, P. T., Meng, C.-I., and Lyons, K. M.: Suppression of discrete aurorae by sunlight, Nature, 381, 766–767, https://doi.org/10.1038/381766a0, 1996. a
Newell, P. T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F. J.: A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res.-Space, 112, A01206, https://doi.org/10.1029/2006JA012015, 2007. a
Pakhotin, I. P., Mann, I. R., Xie, K., Burchill, J. K., and Knudsen, D. J.: Northern preference for terrestrial electromagnetic energy input from space weather, Nat. Commun., 12, 199, https://doi.org/10.1038/s41467-020-20450-3, 2021. a
Papitashvili, V. O. and Rich, F. J.: High-latitude ionospheric convection models derived from Defense Meteorological Satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction, J. Geophys. Res., 107, 1198, https://doi.org/10.1029/2001JA000264, 2002. a, b, c
Pedersen, M. N., Vanhamäki, H., and Aikio, A. T.: Comparison of Field-Aligned Current Responses to HSS/SIR, Sheath, and Magnetic Cloud Driven Geomagnetic Storms, Geophys. Res. Lett., 50, e2023GL103151, https://doi.org/10.1029/2023GL103151, 2023. a
Pettigrew, E. D., Shepherd, S. G., and Ruohoniemi, J. M.: Climatological patterns of high-latitude convection in the Northern and Southern hemispheres: Dipole tilt dependencies and interhemispheric comparison, J. Geophys. Res., 115, A07305, https://doi.org/10.1029/2009JA014956, 2010. a, b, c
Rastätter, L., Shim, J. S., Kuznetsova, M. M., Kilcommons, L. M., Knipp, D. J., Codrescu, M., Fuller-Rowell, T., Emery, B., Weimer, D. R., Cosgrove, R., Wiltberger, M., Raeder, J., Li, W., Tóth, G., and Welling, D.: GEM-CEDAR challenge: Poynting flux at DMSP and modeled Joule heat, Space Weather, 14, 113–135, https://doi.org/10.1002/2015SW001238, 2016. a, b
Reistad, J. P., Laundal, K. M., Østgaard, N., Ohma, A., Burrell, A. G., Hatch, S. M., Haaland, S., and Thomas, E. G.: Quantifying the Lobe Reconnection Rate During Dominant IMF By Periods and Different Dipole Tilt Orientations, J. Geophys. Res.-Space, 126, e2021JA029742, https://doi.org/10.1029/2021JA029742, 2021. a, b
Richmond, A.: Joule Heating in the Thermosphere, in: Space Physics and Aeronomy, Vol. 4, Upper Atmosphere Dynamics and Energetics, edited by: Wang, W., Zhang, Y.-L., and Paxton, L. J., Chap. 1, American Geophysical Union, Washington, D.C., ISBN 978-1-119-50756-7, 2021. a
Richmond, A. D.: Ionospheric electrodynamics using magnetic apex coordinates, J. Geomag. Geoelectr., 47, 191–212, https://doi.org/10.5636/jgg.47.191, 1995. a, b, c, d
Richmond, A. D.: On the ionospheric application of Poynting's theorem, J. Geophys. Res.-Space, 115, A10311, https://doi.org/10.1029/2010JA015768, 2010. a, b, c, d
Sabaka, T. J., Hulot, G., and Olsen, N.: Handbook of Geomathematics, Mathematical Properties Relevant to Geomagnetic Field Modeling, 503–538, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-01546-5, https://doi.org/10.1007/978-3-642-01546-5_17, 2010. a
Sarris, T. E.: Understanding the ionosphere thermosphere response to solar and magnetospheric drivers: status, challenges and open issues, Philos. T. R. Soc. A, 377, 2148, https://doi.org/10.1098/rsta.2018.0101, 2019. a
Shebanits, O., Hadid, L. Z., Cao, H., Morooka, M. W., Hunt, G. J., Dougherty, M. K., Wahlund, J.-E., Waite, J. H., and Müller-Wodarg, I.: Saturn’s near-equatorial ionospheric conductivities from in situ measurements, Sci. Rep., 10, 7932, https://doi.org/10.1038/s41598-020-64787-7, 2020. a
Snekvik, K., Østgaard, N., Tenfjord, P., Reistad, J. P., Laundal, K. M., Milan, S. E., and Haaland, S. E.: Dayside and nightside magnetic field responses at 780 km altitude to dayside reconnection, J. Geophys. Res., 122, 1670–1689, https://doi.org/10.1002/2016JA023177, 2017. a
Strangeway, R. J.: The equivalence of Joule dissipation and frictional heating in the collisional ionosphere, J. Geophys. Res.-Space, 117, A02310, https://doi.org/10.1029/2011JA017302, 2012. a, b
Thayer, J. P. and Semeter, J.: The convergence of magnetospheric energy flux in the polar atmosphere, J. Atmos. Sol.-Terr. Phys., 66, 807–824, https://doi.org/10.1016/j.jastp.2004.01.035, 2004. a
Thomas, E. G. and Shepherd, S. G.: Statistical Patterns of Ionospheric Convection Derived From Mid-latitude, High-Latitude, and Polar SuperDARN HF Radar Observations, J. Geophys. Res.-Space, 123, 3196–3216, https://doi.org/10.1002/2018JA025280, 2018. a
Vanhamäki, H., Yoshikawa, A., Amm, O., and Fujii, R.: Ionospheric Joule heating and Poynting flux in quasi-static approximation, J. Geophys. Res., 117, A08327, https://doi.org/10.1029/2012JA017841, 2012. a, b
Vasyliūnas, V. M.: The physical basis of ionospheric electrodynamics, Ann. Geophys., 30, 357–369, https://doi.org/10.5194/angeo-30-357-2012, 2012. a
Vasyliunas, V. M. and Song, P.: Meaning of ionospheric Joule heating, J. Geophys. Res., 110, A02301, https://doi.org/10.1029/2004JA010615, 2005. a
Wallis, D. D. and Budzinski, E. E.: Empirical models of height integrated conductivities, J. Geophys. Res., 86, 125–137, https://doi.org/10.1029/JA086iA01p00125, 1981. a
Weimer, D. and Edwards, T.: Testing the electrodynamic method to derive height-integrated ionospheric conductances, Ann. Geophys., 39, 31–51, https://doi.org/10.5194/angeo-39-31-2021, 2021. a, b, c, d
Weimer, D. R.: An empirical model of ground-level geomagnetic perturbations, Space Weather, 11, 107–120, https://doi.org/10.1002/swe.20030, 2013. a
Wing, S., Newell, P. T., and Ruohoniemi, J. M.: Double cusp: Model prediction and observational verification, J. Geophys. Res., 106, 25571–25593, https://doi.org/10.1029/2000JA000402, 2001. a
Workayehu, A. B., Vanhamäki, H., and Aikio, A. T.: Seasonal effect on hemispheric asymmetry in ionospheric horizontal and field-aligned currents, J. Geophys. Res.-Space, 125, e2020JA028051, https://doi.org/10.1029/2020JA028051, 2020. a
Workayehu, A. B., Vanhamäki, H., Aikio, A. T., and Shepherd, S. G.: Effect of Interplanetary Magnetic Field on Hemispheric Asymmetry in Ionospheric Horizontal and Field-Aligned Currents During Different Seasons, J. Geophys. Res.-Space, 126, e2021JA029475, https://doi.org/10.1029/2021JA029475, 2021. a
Zhang, B., Brambles, O., Lotko, W., Dunlap-Shohl, W., Smith, R., Wiltberger, M., and Lyon, J.: Predicting the location of polar cusp in the Lyon-Fedder-Mobarry global magnetosphere simulation, J. Geophys. Res.-Space, 118, 6327–6337, https://doi.org/10.1002/jgra.50565, 2013. a, b
Zhou, X. W., Russell, C. T., Le, G., Fuselier, S. A., and Scudder, J. D.: Solar wind control of the polar cusp at high altitude, J. Geophys. Res.-Space, 105, 245–251, https://doi.org/10.1029/1999JA900412, 2000. a
Zhu, Q., Deng, Y., Maute, A., Kilcommons, L. M., Knipp, D. J., and Hairston, M.: ASHLEY: A New Empirical Model for the High-Latitude Electron Precipitation and Electric Field, Space Weather, 19, e2020SW002671, https://doi.org/10.1029/2020SW002671, 2021. a
Editor-in-chief
This paper presents a new set of empirical models for describing variations in ionosphere-thermosphere electrodynamics in both hemispheres, as a function of season as well as prevailing solar wind and interplanetary magnetic field conditions. The models are based on combined measurements of magnetic field perturbations and ionospheric plasma drift made by the Swarm and CHAMP satellites. The chief advantage of these models is that they are the first empirical models of high-latitude ionospheric electrodynamics quantities in both hemispheres that are consistently derived. The model codes are open source and publicly available.
This paper presents a new set of empirical models for describing variations in...
Short summary
In studies of the Earth's ionosphere, a hot topic is how to estimate ionospheric conductivity. This is hard to do for a variety of reasons that mostly amount to a lack of measurements. In this study we use satellite measurements to estimate electromagnetic work and ionospheric conductances in both hemispheres. We identify where our model estimates are inconsistent with laws of physics, which partially solves a previous problem with unrealistic predictions of ionospheric conductances.
In studies of the Earth's ionosphere, a hot topic is how to estimate ionospheric conductivity....