Articles | Volume 42, issue 1
https://doi.org/10.5194/angeo-42-229-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-42-229-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Does high-latitude ionospheric electrodynamics exhibit hemispheric mirror symmetry?
Department of Physics and Technology, University of Bergen, Bergen, Norway
Heikki Vanhamäki
Space Physics and Astronomy Research Unit, University of Oulu, Oulu, Finland
Karl Magnus Laundal
Department of Physics and Technology, University of Bergen, Bergen, Norway
Jone Peter Reistad
Department of Physics and Technology, University of Bergen, Bergen, Norway
Johnathan K. Burchill
Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
Levan Lomidze
Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
David J. Knudsen
Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
Michael Madelaire
Department of Physics and Technology, University of Bergen, Bergen, Norway
Habtamu Tesfaw
Space Physics and Astronomy Research Unit, University of Oulu, Oulu, Finland
Related authors
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer Hatch, and Karl M. Laundal
EGUsphere, https://doi.org/10.5194/egusphere-2024-802, https://doi.org/10.5194/egusphere-2024-802, 2024
Short summary
Short summary
The EISCAT_3D radar is a new ionospheric radar under construction in the Fennoscandia region. The radar will make measurements of plasma characteristics at altitudes above approximately 60 km. The capability of the system to make these measurements on spatial scales of less than 100 m using the multiple digitised signals from each of the radar antenna panels is highlighted. There are many ionospheric small-scale processes that will be further resolved using the techniques discussed here.
Liisa Juusola, Heikki Vanhamäki, Elena Marshalko, Mikhail Kruglyakov, and Ari Viljanen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2831, https://doi.org/10.5194/egusphere-2024-2831, 2024
Short summary
Short summary
Interaction between the magnetic field of the rapidly varying electric currents in space and the conducting ground produces an electric field at the Earth's surface. This geoelectric field drives geomagnetically induced currents in technological conductor networks, which can affect the performance of critical ground infrastructure such as electric power transmission grids. We have developed a new method suitable for monitoring the geoelectric field based on ground magnetic field observations.
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer Hatch, and Karl M. Laundal
EGUsphere, https://doi.org/10.5194/egusphere-2024-802, https://doi.org/10.5194/egusphere-2024-802, 2024
Short summary
Short summary
The EISCAT_3D radar is a new ionospheric radar under construction in the Fennoscandia region. The radar will make measurements of plasma characteristics at altitudes above approximately 60 km. The capability of the system to make these measurements on spatial scales of less than 100 m using the multiple digitised signals from each of the radar antenna panels is highlighted. There are many ionospheric small-scale processes that will be further resolved using the techniques discussed here.
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Short summary
At times when auroras erupt on the sky, the magnetic field surrounding the Earth undergoes rapid changes. On the ground, these changes can induce harmful electric currents in technological conductor networks, such as powerlines. We have used magnetic field observations from northern Europe during 28 such events and found consistent behavior that can help to understand, and thus predict, the processes that drive auroras and geomagnetically induced currents.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Liisa Juusola, Heikki Vanhamäki, Ari Viljanen, and Maxim Smirnov
Ann. Geophys., 38, 983–998, https://doi.org/10.5194/angeo-38-983-2020, https://doi.org/10.5194/angeo-38-983-2020, 2020
Short summary
Short summary
Rapid variations of the magnetic field measured on the ground can be used to estimate space weather risks to power grids, but forecasting the variations remains a challenge. We show that part of this problem stems from the fact that, in addition to electric currents in space, the magnetic field variations are strongly affected by underground electric currents. We suggest that separating the measured field into its space and underground parts could improve our understanding of space weather.
Nikolai Østgaard, Jone P. Reistad, Paul Tenfjord, Karl M. Laundal, Theresa Rexer, Stein E. Haaland, Kristian Snekvik, Michael Hesse, Stephen E. Milan, and Anders Ohma
Ann. Geophys., 36, 1577–1596, https://doi.org/10.5194/angeo-36-1577-2018, https://doi.org/10.5194/angeo-36-1577-2018, 2018
Short summary
Short summary
In this paper we take advantage of having two auroral imaging missions giving simultaneous data of both the southern and northern aurora. Combined with all available in situ measurements from space and global ground-based networks, we explore the asymmetric behavior of geospace. We find large auroral asymmetries and different reconnection geometry in the two hemispheres. During substorm expansion phase asymmetries are reduced.
N. Y. Ganushkina, M. W. Liemohn, S. Dubyagin, I. A. Daglis, I. Dandouras, D. L. De Zeeuw, Y. Ebihara, R. Ilie, R. Katus, M. Kubyshkina, S. E. Milan, S. Ohtani, N. Ostgaard, J. P. Reistad, P. Tenfjord, F. Toffoletto, S. Zaharia, and O. Amariutei
Ann. Geophys., 33, 1369–1402, https://doi.org/10.5194/angeo-33-1369-2015, https://doi.org/10.5194/angeo-33-1369-2015, 2015
Short summary
Short summary
A number of current systems exist in the Earth's magnetosphere. It is very difficult to identify local measurements as belonging to a specific current system. Therefore, there are different definitions of supposedly the same current, leading to unnecessary controversy. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques.
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetosphere–ionosphere interactions
Multiple conjugate observations of magnetospheric fast flow bursts using THEMIS observations
Ionospheric plasma flows associated with the formation of the distorted nightside end of a transpolar arc
Relation between the asymmetric ring current effect and the anti-sunward auroral currents, as deduced from CHAMP observations
Estimating the fate of oxygen ion outflow from the high-altitude cusp
Hybrid-Vlasov modelling of nightside auroral proton precipitation during southward interplanetary magnetic field conditions
Homayon Aryan, Jacob Bortnik, Jinxing Li, James Michael Weygand, Xiangning Chu, and Vassilis Angelopoulos
Ann. Geophys., 40, 531–544, https://doi.org/10.5194/angeo-40-531-2022, https://doi.org/10.5194/angeo-40-531-2022, 2022
Short summary
Short summary
In this study, we use a multipoint analysis of conjugate magnetospheric and ionospheric observations to investigate the magnetospheric and ionospheric responses to fast flow bursts that are associated with different space weather conditions. The results show that ionospheric currents are connected to the magnetospheric flows for different space weather conditions. The connection is more apparent and global for flows that are associated with a geomagnetically active condition.
Motoharu Nowada, Adrian Grocott, and Quan-Qi Shi
Ann. Geophys., 40, 299–314, https://doi.org/10.5194/angeo-40-299-2022, https://doi.org/10.5194/angeo-40-299-2022, 2022
Short summary
Short summary
We report that the ionospheric plasma flow patterns associated with the J-shaped transpolar arc (a type of nightside distorted TPA), detected by the SuperDARN radar, reveal the formation process of the nightside distortion of a TPA. Equatorward flows at the TPA growth point were observed flowing out of the polar cap and then turning toward the pre-midnight main auroral oval along the TPA nightside distortion. These ionospheric flow patterns would cause the distortion at the TPA nightside end.
Hermann Lühr and Yun-Liang Zhou
Ann. Geophys., 38, 749–764, https://doi.org/10.5194/angeo-38-749-2020, https://doi.org/10.5194/angeo-38-749-2020, 2020
Short summary
Short summary
During magnetic storms the magnetic disturbance at low latitudes becomes asymmetric, enhanced in the evening sector and reduced around morning. This has been attributed to the asymmetric ring current. Here a new 3D current system is proposed for explaining the asymmetric signal. Anti-sunward net currents at high latitude are connected at their noon and night ends to field-aligned currents that lead the currents to the magnetopause on the dawn and dusk flanks where the current closure occurs.
Patrik Krcelic, Stein Haaland, Lukas Maes, Rikard Slapak, and Audrey Schillings
Ann. Geophys., 38, 491–505, https://doi.org/10.5194/angeo-38-491-2020, https://doi.org/10.5194/angeo-38-491-2020, 2020
Short summary
Short summary
In this paper we have used Cluster EDI data in combination with the CODIF cusp dataset from Slapak et al. (2017) to obtain parallel and convection velocities for oxygen ions; 69 % of total oxygen outflow from the high-altitude cusps escapes the magnetosphere on average; 50 % escapes tailward beyond the distant X-line. The oxygen capture-versus-escape ratio is highly dependent on geomagnetic conditions. During active conditions, the majority of oxygen outflow is convected to the plasma sheet.
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
Cited articles
Ahn, B., Richmond, A. D., Kamide, Y., Kroehl, H. W., Emery, B. A., de la Beaujardiére, O., and Akasofu, S.: An ionospheric conductance model based on ground magnetic disturbance data, J. Geophys. Re.-Space, 103, 14769–14780, https://doi.org/10.1029/97JA03088, 1998. a, b
Amm, O.: The elementary current method for calculating ionospheric current systems from multisatellite and ground magnetometer data, J. Geophys. Res.-Space, 106, 24843–24855, https://doi.org/10.1029/2001JA900021, 2001. a
Billett, D. D., Grocott, A., Wild, J. A., Walach, M.-T., and Kosch, M. J.: Diurnal Variations in Global Joule Heating Morphology and Magnitude Due To Neutral Winds, J. Geophys. Res.-Space, 123, 2398–2411, https://doi.org/10.1002/2017JA025141, 2018. a
Billett, D. D., McWilliams, K. A., Perry, G. W., Clausen, L. B. N., and Anderson, B. J.: Ionospheric Energy Input in Response to Changes in Solar Wind Driving: Statistics From the SuperDARN and AMPERE Campaigns, J. Geophys. Res.-Space, 127, e2021JA030102, https://doi.org/10.1029/2021JA030102, 2022. a
Burchill, J. K. and Knudsen, D. J.: EFI TII Cross-Track Flow Data Release Notes, Rev. 7, Tech. Rep., Swarm DISC, https://earth.esa.int/eogateway/ (last access: 4 December 2023), 2020. a
Burchill, J. K. and Knudsen, D. J.: Swarm Thermal Ion Imager measurement performance, Earth Planet. Space, 74, 181, https://doi.org/10.1186/s40623-022-01736-w, 2022. a, b
Cai, L., Aikio, A. T., and Nygrén, T.: Height-dependent energy exchange rates in the high-latitude E region ionosphere, J. Geophys. Res.-Space, 118, 7369–7383, https://doi.org/10.1002/2013JA019195, 2013. a
Cai, L., Aikio, A. T., and Milan, S. E.: Joule heating hot spot at high latitudes in the afternoon sector, J. Geophys. Res.-Space, 121, 7135–7152, https://doi.org/10.1002/2016JA022432, 2016. a
Cosgrove, R. B., Bahcivan, H., Chen, S., Sanchez, E., and Knipp, D.: Violation of Hemispheric Symmetry in Integrated Poynting Flux via an Empirical Model, Geophys. Res. Lett., 49, e2021GL097329, https://doi.org/10.1029/2021GL097329, 2022. a, b
Emmert, J. T., Richmond, A. D., and Drob, D. P.: A computationally compact representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth base vectors, J. Geophys. Res.-Space, 115, A08322, https://doi.org/10.1029/2010JA015326, nULL, 2010. a
European Space Agency: Swarm TII 2 Hz cross-track dataset, European Space Agency [data set], https://swarm-diss.eo.esa.int/#swarm/Advanced/Plasma_Data/2Hz_TII_Cross-track_Dataset, last access: 3 August 2023. a
Friis-Christensen, E., Kamide, Y., Richmond, A. D., and Matsushita, S.: Interplanetary magnetic field control of high-latitude electric fields and currents determined from Greenland Magnetometer Data, J. Geophys. Res.-Space, 90, 1325–1338, https://doi.org/10.1029/JA090iA02p01325, 1985. a
Hardy, D. A., Gussenhoven, M. S., Raistrick, R., and McNeil, W. J.: Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity, J. Geophys. Res., 92, 12275, https://doi.org/10.1029/JA092iA11p12275, 1987. a, b
Hatch, S. M.: pySwipe: Python implementation of Swarm Ionospheric Polar Electrodynamics empirical model, Zenodo [code], https://doi.org/10.5281/zenodo.10148940, 2023. a
Hatch, S. M. and Laundal, K. M.: python implementation of the Swipe model (pySwipe), Zenodo [code], https://doi.org/10.5281/zenodo.10148940, https://github.com/Dartspacephysiker/pyswipe (last access: 4 December 2023), 2023a. a, b
Hatch, S. M. and Laundal, K. M.: Swarm Hi-C inversion toolkit, Zenodo [code], https://doi.org/10.5281/zenodo.10245816, https://github.com/Dartspacephysiker/swarm_hi-c_inversion (last access: 4 December 2023), 2023b. a, b
Hatch, S. M., LaBelle, J., and Chaston, C.: Storm phase–partitioned rates and budgets of global Alfvénic energy deposition, electron precipitation, and ion outflow, J. Atmos. Sol.-Terr. Phys., 167, 1–12, https://doi.org/10.1016/j.jastp.2017.08.009, 2018. a
Hatch, S. M., Laundal, K. M., and Reistad, J. P.: Testing the mirror symmetry of Birkeland and ionospheric currents with respect to magnetic latitude, dipole tilt angle, and IMF By, Front. Astron. Space Sci., 9, 958977, https://doi.org/10.3389/fspas.2022.958977, 2022. a, b
Heelis, R. and Maute, A.: Challenges to Understanding the Earth's Ionosphere and Thermosphere, J. Geophys. Res.-Space, 125, e2019JA027497, https://doi.org/10.1029/2019JA027497, 2020. a
Knipp, D., Kilcommons, L., Hairston, M., and Coley, W. R.: Hemispheric Asymmetries in Poynting Flux Derived From DMSP Spacecraft, Geophys. Res. Lett., 48, e2021GL094781, https://doi.org/10.1029/2021GL094781, 2021. a
Larsen, M. F.: Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements, J. Geophys. Res.-Space, 107, SIA 28-1–SIA 28-14, https://doi.org/10.1029/2001JA000218, 2002. a
Laundal, K. M. and Richmond, A. D.: Magnetic Coordinate Systems, Space Sci. Rev., 206, 27–59, https://doi.org/10.1007/s11214-016-0275-y, 2017. a, b
Laundal, K. M., Finlay, C. C., and Olsen, N.: Sunlight effects on the 3D polar current system determined from low Earth orbit measurements, Earth Planet. Space, 68, 142, https://doi.org/10.1186/s40623-016-0518-x, 2016. a
Laundal, K. M., Cnossen, I., Milan, S. E., Haaland, S. E., Coxon, J., Pedatella, N. M., Förster, M., and Reistad, J. P.: North-South asymmetries in Earth's magnetic field - Effects on high-latitude geospace, Space Sci. Rev., 206, 225–257, https://doi.org/10.1007/s11214-016-0273-0, 2017. a
Lomidze, L., Burchill, J. K., Knudsen, D. J., Kouznetsov, A., and Weimer, D. R.: Validity Study of the Swarm Horizontal Cross-Track Ion Drift Velocities in the High-Latitude Ionosphere, Earth Space Sci., 6, 411–432, https://doi.org/10.1029/2018EA000546, https://doi.org/10.1029/2018EA000546, 2019. a
Lomidze, L., Burchill, J. K., Knudsen, D. J., and Huba, J. D.: Estimation of Ion Temperature in the Upper Ionosphere Along the Swarm Satellite Orbits, Earth Space Sci., 8, e2021EA001925, https://doi.org/10.1029/2021EA001925, 2021. a, b, c, d
Lowes, F. J.: Mean-square values on sphere of spherical harmonic vector fields, J. Geophys. Res., 71, 2179–2179, https://doi.org/10.1029/JZ071i008p02179, 1966. a
Madelaire, M., Laundal, K., Gjerloev, J., Hatch, S., Reistad, J., Vanhamäki, H., Waters, C., Ohma, A., Mesquita, R., and Merkin, V.: Spatial Resolution in Inverse Problems: The EZIE satellite mission, J. Geophys. Res.-Space, 128, e2023JA031394, https://doi.org/10.1029/2023JA031394, 2023. a
Mannucci, A. J., McGranaghan, R., Meng, X., and Verkhoglyadova, O. P.: An Analysis of Magnetosphere-Ionosphere Coupling That Is Independent of Inertial Reference Frame, J. Geophys. Res.-Space, 127, e2021JA030009, https://doi.org/10.1029/2021JA030009, 2022. a, b, c
Matsuo, T. and Richmond, A. D.: Effects of high-latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate, J. Geophys. Res.-Space, 113, A07309, https://doi.org/10.1029/2007JA012993, 2008. a
McGranaghan, R., Knipp, D. J., Matsuo, T., Godinez, H., Redmon, R. J., Solomon, S. C., and Morley, S. K.: Modes of high-latitude auroral conductance variability derived from DMSP energetic electron precipitation observations: Empirical orthogonal function analysis, J. Geophys. Res.-Space, 120, 1111–1331, https://doi.org/10.1002/2015JA021828, 2015. a
NASA/Goddard Space Flight Center, Space Physics Data Facility: https://omniweb.gsfc.nasa.gov/form/dx1.html [data set], last access: 3 August 2023. a
National Research Council Canada: Penticton Solar Radio Flux at 10.7 cm, LISIRD [data set], https://lasp.colorado.edu/lisird/data/penticton_radio_flux, last access: 3 August 2023. a
Newell, P. T., Meng, C.-I., and Lyons, K. M.: Suppression of discrete aurorae by sunlight, Nature, 381, 766–767, https://doi.org/10.1038/381766a0, 1996. a
Newell, P. T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F. J.: A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res.-Space, 112, A01206, https://doi.org/10.1029/2006JA012015, 2007. a
Pakhotin, I. P., Mann, I. R., Xie, K., Burchill, J. K., and Knudsen, D. J.: Northern preference for terrestrial electromagnetic energy input from space weather, Nat. Commun., 12, 199, https://doi.org/10.1038/s41467-020-20450-3, 2021. a
Papitashvili, V. O. and Rich, F. J.: High-latitude ionospheric convection models derived from Defense Meteorological Satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction, J. Geophys. Res., 107, 1198, https://doi.org/10.1029/2001JA000264, 2002. a, b, c
Pedersen, M. N., Vanhamäki, H., and Aikio, A. T.: Comparison of Field-Aligned Current Responses to HSS/SIR, Sheath, and Magnetic Cloud Driven Geomagnetic Storms, Geophys. Res. Lett., 50, e2023GL103151, https://doi.org/10.1029/2023GL103151, 2023. a
Pettigrew, E. D., Shepherd, S. G., and Ruohoniemi, J. M.: Climatological patterns of high-latitude convection in the Northern and Southern hemispheres: Dipole tilt dependencies and interhemispheric comparison, J. Geophys. Res., 115, A07305, https://doi.org/10.1029/2009JA014956, 2010. a, b, c
Rastätter, L., Shim, J. S., Kuznetsova, M. M., Kilcommons, L. M., Knipp, D. J., Codrescu, M., Fuller-Rowell, T., Emery, B., Weimer, D. R., Cosgrove, R., Wiltberger, M., Raeder, J., Li, W., Tóth, G., and Welling, D.: GEM-CEDAR challenge: Poynting flux at DMSP and modeled Joule heat, Space Weather, 14, 113–135, https://doi.org/10.1002/2015SW001238, 2016. a, b
Reistad, J. P., Laundal, K. M., Østgaard, N., Ohma, A., Burrell, A. G., Hatch, S. M., Haaland, S., and Thomas, E. G.: Quantifying the Lobe Reconnection Rate During Dominant IMF By Periods and Different Dipole Tilt Orientations, J. Geophys. Res.-Space, 126, e2021JA029742, https://doi.org/10.1029/2021JA029742, 2021. a, b
Richmond, A.: Joule Heating in the Thermosphere, in: Space Physics and Aeronomy, Vol. 4, Upper Atmosphere Dynamics and Energetics, edited by: Wang, W., Zhang, Y.-L., and Paxton, L. J., Chap. 1, American Geophysical Union, Washington, D.C., ISBN 978-1-119-50756-7, 2021. a
Richmond, A. D.: Ionospheric electrodynamics using magnetic apex coordinates, J. Geomag. Geoelectr., 47, 191–212, https://doi.org/10.5636/jgg.47.191, 1995. a, b, c, d
Richmond, A. D.: On the ionospheric application of Poynting's theorem, J. Geophys. Res.-Space, 115, A10311, https://doi.org/10.1029/2010JA015768, 2010. a, b, c, d
Sabaka, T. J., Hulot, G., and Olsen, N.: Handbook of Geomathematics, Mathematical Properties Relevant to Geomagnetic Field Modeling, 503–538, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-01546-5, https://doi.org/10.1007/978-3-642-01546-5_17, 2010. a
Sarris, T. E.: Understanding the ionosphere thermosphere response to solar and magnetospheric drivers: status, challenges and open issues, Philos. T. R. Soc. A, 377, 2148, https://doi.org/10.1098/rsta.2018.0101, 2019. a
Shebanits, O., Hadid, L. Z., Cao, H., Morooka, M. W., Hunt, G. J., Dougherty, M. K., Wahlund, J.-E., Waite, J. H., and Müller-Wodarg, I.: Saturn’s near-equatorial ionospheric conductivities from in situ measurements, Sci. Rep., 10, 7932, https://doi.org/10.1038/s41598-020-64787-7, 2020. a
Snekvik, K., Østgaard, N., Tenfjord, P., Reistad, J. P., Laundal, K. M., Milan, S. E., and Haaland, S. E.: Dayside and nightside magnetic field responses at 780 km altitude to dayside reconnection, J. Geophys. Res., 122, 1670–1689, https://doi.org/10.1002/2016JA023177, 2017. a
Strangeway, R. J.: The equivalence of Joule dissipation and frictional heating in the collisional ionosphere, J. Geophys. Res.-Space, 117, A02310, https://doi.org/10.1029/2011JA017302, 2012. a, b
Thayer, J. P. and Semeter, J.: The convergence of magnetospheric energy flux in the polar atmosphere, J. Atmos. Sol.-Terr. Phys., 66, 807–824, https://doi.org/10.1016/j.jastp.2004.01.035, 2004. a
Thomas, E. G. and Shepherd, S. G.: Statistical Patterns of Ionospheric Convection Derived From Mid-latitude, High-Latitude, and Polar SuperDARN HF Radar Observations, J. Geophys. Res.-Space, 123, 3196–3216, https://doi.org/10.1002/2018JA025280, 2018. a
Vanhamäki, H., Yoshikawa, A., Amm, O., and Fujii, R.: Ionospheric Joule heating and Poynting flux in quasi-static approximation, J. Geophys. Res., 117, A08327, https://doi.org/10.1029/2012JA017841, 2012. a, b
Vasyliūnas, V. M.: The physical basis of ionospheric electrodynamics, Ann. Geophys., 30, 357–369, https://doi.org/10.5194/angeo-30-357-2012, 2012. a
Vasyliunas, V. M. and Song, P.: Meaning of ionospheric Joule heating, J. Geophys. Res., 110, A02301, https://doi.org/10.1029/2004JA010615, 2005. a
Wallis, D. D. and Budzinski, E. E.: Empirical models of height integrated conductivities, J. Geophys. Res., 86, 125–137, https://doi.org/10.1029/JA086iA01p00125, 1981. a
Weimer, D. and Edwards, T.: Testing the electrodynamic method to derive height-integrated ionospheric conductances, Ann. Geophys., 39, 31–51, https://doi.org/10.5194/angeo-39-31-2021, 2021. a, b, c, d
Weimer, D. R.: An empirical model of ground-level geomagnetic perturbations, Space Weather, 11, 107–120, https://doi.org/10.1002/swe.20030, 2013. a
Wing, S., Newell, P. T., and Ruohoniemi, J. M.: Double cusp: Model prediction and observational verification, J. Geophys. Res., 106, 25571–25593, https://doi.org/10.1029/2000JA000402, 2001. a
Workayehu, A. B., Vanhamäki, H., and Aikio, A. T.: Seasonal effect on hemispheric asymmetry in ionospheric horizontal and field-aligned currents, J. Geophys. Res.-Space, 125, e2020JA028051, https://doi.org/10.1029/2020JA028051, 2020. a
Workayehu, A. B., Vanhamäki, H., Aikio, A. T., and Shepherd, S. G.: Effect of Interplanetary Magnetic Field on Hemispheric Asymmetry in Ionospheric Horizontal and Field-Aligned Currents During Different Seasons, J. Geophys. Res.-Space, 126, e2021JA029475, https://doi.org/10.1029/2021JA029475, 2021. a
Zhang, B., Brambles, O., Lotko, W., Dunlap-Shohl, W., Smith, R., Wiltberger, M., and Lyon, J.: Predicting the location of polar cusp in the Lyon-Fedder-Mobarry global magnetosphere simulation, J. Geophys. Res.-Space, 118, 6327–6337, https://doi.org/10.1002/jgra.50565, 2013. a, b
Zhou, X. W., Russell, C. T., Le, G., Fuselier, S. A., and Scudder, J. D.: Solar wind control of the polar cusp at high altitude, J. Geophys. Res.-Space, 105, 245–251, https://doi.org/10.1029/1999JA900412, 2000. a
Zhu, Q., Deng, Y., Maute, A., Kilcommons, L. M., Knipp, D. J., and Hairston, M.: ASHLEY: A New Empirical Model for the High-Latitude Electron Precipitation and Electric Field, Space Weather, 19, e2020SW002671, https://doi.org/10.1029/2020SW002671, 2021. a
Editor-in-chief
This paper presents a new set of empirical models for describing variations in ionosphere-thermosphere electrodynamics in both hemispheres, as a function of season as well as prevailing solar wind and interplanetary magnetic field conditions. The models are based on combined measurements of magnetic field perturbations and ionospheric plasma drift made by the Swarm and CHAMP satellites. The chief advantage of these models is that they are the first empirical models of high-latitude ionospheric electrodynamics quantities in both hemispheres that are consistently derived. The model codes are open source and publicly available.
This paper presents a new set of empirical models for describing variations in...
Short summary
In studies of the Earth's ionosphere, a hot topic is how to estimate ionospheric conductivity. This is hard to do for a variety of reasons that mostly amount to a lack of measurements. In this study we use satellite measurements to estimate electromagnetic work and ionospheric conductances in both hemispheres. We identify where our model estimates are inconsistent with laws of physics, which partially solves a previous problem with unrealistic predictions of ionospheric conductances.
In studies of the Earth's ionosphere, a hot topic is how to estimate ionospheric conductivity....