Articles | Volume 42, issue 1
https://doi.org/10.5194/angeo-42-163-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-42-163-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Permutation entropy and complexity analysis of large-scale solar wind structures and streams
Emilia K. J. Kilpua
CORRESPONDING AUTHOR
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Simon Good
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Matti Ala-Lahti
Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143, USA
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Adnane Osmane
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Venla Koikkalainen
Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Related authors
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Preprint under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Adnane Osmane, Mikko Savola, Emilia Kilpua, Hannu Koskinen, Joseph E. Borovsky, and Milla Kalliokoski
Ann. Geophys., 40, 37–53, https://doi.org/10.5194/angeo-40-37-2022, https://doi.org/10.5194/angeo-40-37-2022, 2022
Short summary
Short summary
It has long been known that particles get accelerated close to the speed of light in the near-Earth space environment. Research in the last decades has also clarified what processes and waves are responsible for the acceleration of particles. However, it is difficult to quantify the scale of the impact of various processes competing with one another. In this study we present a methodology to quantify the impact waves can have on energetic particles.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Emilia K. J. Kilpua, Dominique Fontaine, Simon W. Good, Matti Ala-Lahti, Adnane Osmane, Erika Palmerio, Emiliya Yordanova, Clement Moissard, Lina Z. Hadid, and Miho Janvier
Ann. Geophys., 38, 999–1017, https://doi.org/10.5194/angeo-38-999-2020, https://doi.org/10.5194/angeo-38-999-2020, 2020
Short summary
Short summary
This paper studies magnetic field fluctuations in three turbulent sheath regions ahead of interplanetary coronal mass ejections (ICMEs) in the near-Earth solar wind. Our results show that fluctuation properties vary significantly in different parts of the sheath when compared to solar wind ahead. Turbulence in sheaths resembles that of the slow solar wind in the terrestrial magnetosheath, e.g. regarding compressibility and intermittency, and it often lacks Kolmogorov's spectral indices.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Matti M. Ala-Lahti, Emilia K. J. Kilpua, Andrew P. Dimmock, Adnane Osmane, Tuija Pulkkinen, and Jan Souček
Ann. Geophys., 36, 793–808, https://doi.org/10.5194/angeo-36-793-2018, https://doi.org/10.5194/angeo-36-793-2018, 2018
Short summary
Short summary
We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME) to deepen our understanding of these geo-effective plasma environments. The results imply that mirror modes are common structures in ICME sheaths and occur almost exclusively as dip-like structures and in mirror stable stable plasma.
Erika Palmerio, Emilia K. J. Kilpua, and Neel P. Savani
Ann. Geophys., 34, 313–322, https://doi.org/10.5194/angeo-34-313-2016, https://doi.org/10.5194/angeo-34-313-2016, 2016
Short summary
Short summary
Coronal Mass Ejections (CMEs) are giant clouds of plasma and magnetic field that erupt from the Sun and travel though the solar wind. They can cause interplanetary shocks in the vicinity of Earth. We show in our paper that the region that follows CME-driven shocks, known as sheath region, can obtain a planar configuration of the magnetic field lines (planar magnetic structure, PMS) due to the compression resulting from the shock itself or from the draping of the magnetic field ahead of the CME.
M. Myllys, E. Kilpua, and T. Pulkkinen
Ann. Geophys., 33, 845–855, https://doi.org/10.5194/angeo-33-845-2015, https://doi.org/10.5194/angeo-33-845-2015, 2015
K. Andréeová, L. Juusola, E. K. J. Kilpua, and H. E. J. Koskinen
Ann. Geophys., 32, 1293–1302, https://doi.org/10.5194/angeo-32-1293-2014, https://doi.org/10.5194/angeo-32-1293-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 1247–1261, https://doi.org/10.5194/angeo-32-1247-2014, https://doi.org/10.5194/angeo-32-1247-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 157–173, https://doi.org/10.5194/angeo-32-157-2014, https://doi.org/10.5194/angeo-32-157-2014, 2014
E. K. J. Kilpua, H. Hietala, H. E. J. Koskinen, D. Fontaine, and L. Turc
Ann. Geophys., 31, 1559–1567, https://doi.org/10.5194/angeo-31-1559-2013, https://doi.org/10.5194/angeo-31-1559-2013, 2013
E. K. J. Kilpua, A. Isavnin, A. Vourlidas, H. E. J. Koskinen, and L. Rodriguez
Ann. Geophys., 31, 1251–1265, https://doi.org/10.5194/angeo-31-1251-2013, https://doi.org/10.5194/angeo-31-1251-2013, 2013
L. Turc, D. Fontaine, P. Savoini, H. Hietala, and E. K. J. Kilpua
Ann. Geophys., 31, 1011–1019, https://doi.org/10.5194/angeo-31-1011-2013, https://doi.org/10.5194/angeo-31-1011-2013, 2013
K. Andreeova, E. K. J. Kilpua, H. Hietala, H. E. J. Koskinen, A. Isavnin, and R. Vainio
Ann. Geophys., 31, 555–562, https://doi.org/10.5194/angeo-31-555-2013, https://doi.org/10.5194/angeo-31-555-2013, 2013
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Preprint under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Adnane Osmane, Mikko Savola, Emilia Kilpua, Hannu Koskinen, Joseph E. Borovsky, and Milla Kalliokoski
Ann. Geophys., 40, 37–53, https://doi.org/10.5194/angeo-40-37-2022, https://doi.org/10.5194/angeo-40-37-2022, 2022
Short summary
Short summary
It has long been known that particles get accelerated close to the speed of light in the near-Earth space environment. Research in the last decades has also clarified what processes and waves are responsible for the acceleration of particles. However, it is difficult to quantify the scale of the impact of various processes competing with one another. In this study we present a methodology to quantify the impact waves can have on energetic particles.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Emilia K. J. Kilpua, Dominique Fontaine, Simon W. Good, Matti Ala-Lahti, Adnane Osmane, Erika Palmerio, Emiliya Yordanova, Clement Moissard, Lina Z. Hadid, and Miho Janvier
Ann. Geophys., 38, 999–1017, https://doi.org/10.5194/angeo-38-999-2020, https://doi.org/10.5194/angeo-38-999-2020, 2020
Short summary
Short summary
This paper studies magnetic field fluctuations in three turbulent sheath regions ahead of interplanetary coronal mass ejections (ICMEs) in the near-Earth solar wind. Our results show that fluctuation properties vary significantly in different parts of the sheath when compared to solar wind ahead. Turbulence in sheaths resembles that of the slow solar wind in the terrestrial magnetosheath, e.g. regarding compressibility and intermittency, and it often lacks Kolmogorov's spectral indices.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Matti M. Ala-Lahti, Emilia K. J. Kilpua, Andrew P. Dimmock, Adnane Osmane, Tuija Pulkkinen, and Jan Souček
Ann. Geophys., 36, 793–808, https://doi.org/10.5194/angeo-36-793-2018, https://doi.org/10.5194/angeo-36-793-2018, 2018
Short summary
Short summary
We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME) to deepen our understanding of these geo-effective plasma environments. The results imply that mirror modes are common structures in ICME sheaths and occur almost exclusively as dip-like structures and in mirror stable stable plasma.
Víctor Muñoz, Macarena Domínguez, Juan Alejandro Valdivia, Simon Good, Giuseppina Nigro, and Vincenzo Carbone
Nonlin. Processes Geophys., 25, 207–216, https://doi.org/10.5194/npg-25-207-2018, https://doi.org/10.5194/npg-25-207-2018, 2018
Short summary
Short summary
Fractals are self-similar objects (which look the same at all scales), whose dimensions can be noninteger. They are mathematical concepts, useful to describe various physical systems, as the fractal dimension is a measure of their complexity. In this paper we study how these concepts can be applied to some problems in space plasmas, such as the activity of the Earth's magnetosphere, simulations of plasma turbulence, or identification of magnetic structures ejected from the Sun.
Erika Palmerio, Emilia K. J. Kilpua, and Neel P. Savani
Ann. Geophys., 34, 313–322, https://doi.org/10.5194/angeo-34-313-2016, https://doi.org/10.5194/angeo-34-313-2016, 2016
Short summary
Short summary
Coronal Mass Ejections (CMEs) are giant clouds of plasma and magnetic field that erupt from the Sun and travel though the solar wind. They can cause interplanetary shocks in the vicinity of Earth. We show in our paper that the region that follows CME-driven shocks, known as sheath region, can obtain a planar configuration of the magnetic field lines (planar magnetic structure, PMS) due to the compression resulting from the shock itself or from the draping of the magnetic field ahead of the CME.
M. Myllys, E. Kilpua, and T. Pulkkinen
Ann. Geophys., 33, 845–855, https://doi.org/10.5194/angeo-33-845-2015, https://doi.org/10.5194/angeo-33-845-2015, 2015
K. Andréeová, L. Juusola, E. K. J. Kilpua, and H. E. J. Koskinen
Ann. Geophys., 32, 1293–1302, https://doi.org/10.5194/angeo-32-1293-2014, https://doi.org/10.5194/angeo-32-1293-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 1247–1261, https://doi.org/10.5194/angeo-32-1247-2014, https://doi.org/10.5194/angeo-32-1247-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 157–173, https://doi.org/10.5194/angeo-32-157-2014, https://doi.org/10.5194/angeo-32-157-2014, 2014
E. K. J. Kilpua, H. Hietala, H. E. J. Koskinen, D. Fontaine, and L. Turc
Ann. Geophys., 31, 1559–1567, https://doi.org/10.5194/angeo-31-1559-2013, https://doi.org/10.5194/angeo-31-1559-2013, 2013
E. K. J. Kilpua, A. Isavnin, A. Vourlidas, H. E. J. Koskinen, and L. Rodriguez
Ann. Geophys., 31, 1251–1265, https://doi.org/10.5194/angeo-31-1251-2013, https://doi.org/10.5194/angeo-31-1251-2013, 2013
L. Turc, D. Fontaine, P. Savoini, H. Hietala, and E. K. J. Kilpua
Ann. Geophys., 31, 1011–1019, https://doi.org/10.5194/angeo-31-1011-2013, https://doi.org/10.5194/angeo-31-1011-2013, 2013
K. Andreeova, E. K. J. Kilpua, H. Hietala, H. E. J. Koskinen, A. Isavnin, and R. Vainio
Ann. Geophys., 31, 555–562, https://doi.org/10.5194/angeo-31-555-2013, https://doi.org/10.5194/angeo-31-555-2013, 2013
Cited articles
Balasis, G., Daglis, I. A., Kapiris, P., Mandea, M., Vassiliadis, D., and Eftaxias, K.: From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics, Ann. Geophys., 24, 3557–3567, https://doi.org/10.5194/angeo-24-3557-2006, 2006. a, b
Balasis, G., Balikhin, M. A., Chapman, S. C., Consolini, G., Daglis, I. A., Donner, R. V., Kurths, J., Paluš, M., Runge, J., Tsurutani, B. T., Vassiliadis, D., Wing, S., Gjerloev, J. W., Johnson, J., Materassi, M., Alberti, T., Papadimitriou, C., Manshour, P., Boutsi, A. Z., and Stumpo, M.: Complex Systems Methods Characterizing Nonlinear Processes in the Near-Earth Electromagnetic Environment: Recent Advances and Open Challenges, Space Sci. Rev., 219, 38, https://doi.org/10.1007/s11214-023-00979-7, 2023. a
Bandt, C. and Pompe, B.: Permutation Entropy: A Natural Complexity Measure for Time Series, Phys. Rev. Lett., 88, 174102, https://doi.org/10.1103/PhysRevLett.88.174102, 2002. a, b
Belcher, J. W. and Davis, Leverett, J.: Large-amplitude Alfvén waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534, https://doi.org/10.1029/JA076i016p03534, 1971. a, b
Borovsky, J. E. and Funsten, H. O.: Role of solar wind turbulence in the coupling of the solar wind to the Earth's magnetosphere, J. Geophys. Res., 108, 1246, https://doi.org/10.1029/2002JA009601, 2003. a
Borovsky, J. E., Denton, M. H., and Smith, C. W.: Some Properties of the Solar Wind Turbulence at 1 AU Statistically Examined in the Different Types of Solar Wind Plasma, J. Geophys. Res.-Space, 124, 2406–2424, https://doi.org/10.1029/2019JA026580, 2019. a
Bruno, R.: Intermittency in Solar Wind Turbulence From Fluid to Kinetic Scales, Earth Space Sci., 6, 656–672, https://doi.org/10.1029/2018EA000535, 2019. a
Bruno, R. and Carbone, V.: The Solar Wind as a Turbulence Laboratory, Living Rev. Sol. Phys., 10, 2, https://doi.org/10.12942/lrsp-2013-2, 2013. a, b, c, d
Bruno, R., Carbone, V., Sorriso-Valvo, L., and Bavassano, B.: Radial evolution of solar wind intermittency in the inner heliosphere, J. Geophys. Res.-Space, 108, 1130, https://doi.org/10.1029/2002JA009615, 2003. a
Burlaga, L., Sittler, E., Mariani, F., and Schwenn, R.: Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations, J. Geophys. Res., 86, 6673–6684, https://doi.org/10.1029/JA086iA08p06673, 1981. a
Candey, R. M.: Coordinated Data Analysis Web, CDAWeb [data set], https://cdaweb.gsfc.nasa.gov, last access: 5 May 2024. a
Chen, C. H. K., Bale, S. D., Bonnell, J. W., Borovikov, D., Bowen, T. A., Burgess, D., Case, A. W., Chandran, B. D. G., de Wit, T. D., Goetz, K., Harvey, P. R., Kasper, J. C., Klein, K. G., Korreck, K. E., Larson, D., Livi, R., MacDowall, R. J., Malaspina, D. M., Mallet, A., McManus, M. D., Moncuquet, M., Pulupa, M., Stevens, M. L., and Whittlesey, P.: The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere, Astrophys. J. Suppl. S., 246, 53, https://doi.org/10.3847/1538-4365/ab60a3, 2020. a, b
Dai, L., Han, Y., Wang, C., Yao, S., Gonzalez, W., Duan, S., Lavraud, B., Ren, Y., and Guo, Z.: Geoeffectiveness of Interplanetary Alfvén Waves, I. Magnetopause Magnetic Reconnection and Directly Driven Substorms, Astrophys. J., 945, 47, https://doi.org/10.3847/1538-4357/acb267, 2023. a
De Michelis, P., Consolini, G., Tozzi, R., and Marcucci, M. F.: Observations of high-latitude geomagnetic field fluctuations during St. Patrick's Day storm: Swarm and SuperDARN measurements, Earth Planet. Space, 68, 105, https://doi.org/10.1186/s40623-016-0476-3, 2016. a, b, c
di Matteo, T.: Multi-scaling in finance, Quant. Financ., 7, 21–36, https://doi.org/10.1080/14697680600969727, 2007. a, b
Flynn, C.: fbm 0.3.0 [data set], https://pypi.org/project/fbm/, last access: 5 May 2024. a
Giannattasio, F., Consolini, G., Berrilli, F., and De Michelis, P.: Scaling properties of magnetic field fluctuations in the quiet Sun, Astron. Astrophys., 659, A180, https://doi.org/10.1051/0004-6361/202142940, 2022. a
Gilmore, M., Yu, C. X., Rhodes, T. L., and Peebles, W. A.: Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence, Phys. Plasmas, 9, 1312–1317, https://doi.org/10.1063/1.1459707, 2002. a
Gomes, L. F., Gomes, T. F. P., Rempel, E. L., and Gama, S.: Origin of multifractality in solar wind turbulence: the role of current sheets, Mon. Not. R. Astron. Soc., 519, 3623–3634, https://doi.org/10.1093/mnras/stac3577, 2023. a
Good, S. W., Rantala, O. K., Jylhä, A. S. M., Chen, C. H. K., Möstl, C., and Kilpua, E. K. J.: Turbulence Properties of Interplanetary Coronal Mass Ejections in the Inner Heliosphere: Dependence on Proton Beta and Flux Rope Structure, Astrophys. J. Lett., 956, https://doi.org/10.3847/2041-8213/acfd1c, 2023. a, b
Gosling, J. T., Asbridge, J. R., Bame, S. J., and Feldman, W. C.: Solar wind stream interfaces, J. Geophys. Res., 83, 1401–1412, https://doi.org/10.1029/JA083iA04p01401, 1978. a
Han, Y., Dai, L., Yao, S., Wang, C., Gonzalez, W., Duan, S., Lavraud, B., Ren, Y., and Guo, Z.: Geoeffectiveness of Interplanetary Alfvén Waves, II. Spectral Characteristics and Geomagnetic Responses, Astron. Astrophys., 945, 48, https://doi.org/10.3847/1538-4357/acb266, 2023. a
Iroshnikov, P. S.: Turbulence of a Conducting Fluid in a Strong Magnetic Field, Soviet Astron., 7, p. 566, https://ui.adsabs.harvard.edu/abs/1964SvA.....7..566I (last access: 5 May 2024), 1964. a
Jian, L.: Stream Interaction Regions (SIRs) from Wind and ACE Data during 1995–2009 [data set], http://www.srl.caltech.edu/ACE/ASC/DATA/level3/SIR_List_1995_2009_Jian.pdf, last access: 5 May 2024. a
Jian, L., Russell, C. T., Luhmann, J. G., and Skoug, R. M.: Properties of Stream Interactions at One AU During 1995 2004, Sol. Phys., 239, 337–392, https://doi.org/10.1007/s11207-006-0132-3, 2006. a
Kilpua, E., Koskinen, H. E. J., and Pulkkinen, T. I.: Coronal mass ejections and their sheath regions in interplanetary space, Liv. Rev. Sol. Phys., 14, 5, https://doi.org/10.1007/s41116-017-0009-6, 2017a. a, b, c, d
Kilpua, E. K. J., Isavnin, A., Vourlidas, A., Koskinen, H. E. J., and Rodriguez, L.: On the relationship between interplanetary coronal mass ejections and magnetic clouds, Ann. Geophys., 31, 1251–1265, https://doi.org/10.5194/angeo-31-1251-2013, 2013. a
Kilpua, E. K. J., Balogh, A., von Steiger, R., and Liu, Y. D.: Geoeffective Properties of Solar Transients and Stream Interaction Regions, Space Sci. Rev., 212, 1271–1314, https://doi.org/10.1007/s11214-017-0411-3, 2017b. a, b
Kilpua, E. K. J., Fontaine, D., Good, S. W., Ala-Lahti, M., Osmane, A., Palmerio, E., Yordanova, E., Moissard, C., Hadid, L. Z., and Janvier, M.: Magnetic field fluctuation properties of coronal mass ejection-driven sheath regions in the near-Earth solar wind, Ann. Geophys., 38, 999–1017, https://doi.org/10.5194/angeo-38-999-2020, 2020. a
Kilpua, E. K. J., Good, S. W., Ala-Lahti, M., Osmane, A., Fontaine, D., Hadid, L., Janvier, M., and Yordanova, E.: Statistical analysis of magnetic field fluctuations in CME-driven sheath regions, Front. Astron. Space Sci., 7, 610278, https://doi.org/10.3389/fspas.2020.610278, 2021. a, b, c
Kilpua, E. K. J., Good, S. W., Ala-Lahti, M., Osmane, A., Pal, S., Soljento, J. E., Zhao, L. L., and Bale, S.: Structure and fluctuations of a slow ICME sheath observed at 0.5 au by the Parker Solar Probe, Astron. Astrophys., 663, A108, https://doi.org/10.1051/0004-6361/202142191, 2022. a, b, c, d
Klein, L. W. and Burlaga, L. F.: Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 87, 613–624, https://doi.org/10.1029/JA087iA02p00613, 1982. a, b
Kolmogorov, A.: The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds' Numbers, Akademiia Nauk SSSR Doklady, 30, 301–305, 1941. a
Kraichnan, R. H.: Inertial-Range Spectrum of Hydromagnetic Turbulence, Phys. Fluids, 8, 1385–1387, https://doi.org/10.1063/1.1761412, 1965. a
Lepping, R. P., Acũna, M. H., Burlaga, L. F., Farrell, W. M., Slavin, J. A., Schatten, K. H., Mariani, F., Ness, N. F., Neubauer, F. M., Whang, Y. C., Byrnes, J. B., Kennon, R. S., Panetta, P. V., Scheifele, J., and Worley, E. M.: The Wind Magnetic Field Investigation, Space Sci. Rev., 71, 207–229, https://doi.org/10.1007/BF00751330, 1995. a
Mandelbrot, B. B.: The fractal geometry of nature, W. H. Freeman and Co., ISBN: 0716711869, 1977. a
Marsch, E. and Liu, S.: Structure functions and intermittency of velocity fluctuations in the inner solar wind, Ann. Geophys., 11, 227–238, 1993. a
Marsch, E. and Tu, C.-Y.: Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind, Nonlin. Processes Geophys., 4, 101–124, https://doi.org/10.5194/npg-4-101-1997, 1997. a
Nieves-Chinchilla, T.: Wind ICME Catalogue 1995–2021, NASA [data set], https://wind.nasa.gov/ICME_catalog/, last access: 5 May 2024. a
Nieves-Chinchilla, T., Vourlidas, A., Raymond, J. C., Linton, M. G., Al-haddad, N., Savani, N. P., Szabo, A., and Hidalgo, M. A.: Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations, Sol. Phys., 293, 25, https://doi.org/10.1007/s11207-018-1247-z, 2018. a
Ogilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J. D., Sittler, E. C., J., Torbert, R. B., Bodet, D., Needell, G., Lazarus, A. J., Steinberg, J. T., Tappan, J. H., Mavretic, A., and Gergin, E.: SWE, A Comprehensive Plasma Instrument for the Wind Spacecraft, Space Sci. Rev., 71, 55–77, https://doi.org/10.1007/BF00751326, 1995. a
Olivier, C. P., Engelbrecht, N. E., and Strauss, R. D.: Permutation Entropy Analysis of Magnetic Field Turbulence at 1AU Revisited, J. Geophys. Res.-Space, 124, 4–18, https://doi.org/10.1029/2018JA026102, 2019. a
Osmane, A., Dimmock, A. P., Naderpour, R., Pulkkinen, T. I., and Nykyri, K.: The impact of solar wind ULF Bz fluctuations on geomagnetic activity for viscous timescales during strongly northward and southward IMF, J. Geophys. Re.-Space, 120, 9307–9322, https://doi.org/10.1002/2015JA021505, 2015. a
Osmane, A., Dimmock, A. P., and Pulkkinen, T. I.: Jensen-Shannon Complexity and Permutation Entropy Analysis of Geomagnetic Auroral Currents, J. Geophys. Res.-Space, 124, 2541–2551, https://doi.org/10.1029/2018JA026248, 2019. a, b, c
Oughton, S. and Engelbrecht, N. E.: Solar wind turbulence: Connections with energetic particles, New Astron., 83, 101507, https://doi.org/10.1016/j.newast.2020.101507, 2021. a
Patzelt, F.: colorednoise.py, Github [data set], https://github.com/felixpatzelt/colorednoise, last access: 5 May 2024. a
Raath, J. L., Olivier, C. P., and Engelbrecht, N. E.: A Permutation Entropy Analysis of Voyager Interplanetary Magnetic Field Observations, J. Geophys. Res.-Space, 127, e30200, https://doi.org/10.1029/2021JA030200, 2022. a, b, c, d
Richardson, I. G.: Solar wind stream interaction regions throughout the heliosphere, Liv. Rev. Sol. Phys., 15, 1, https://doi.org/10.1007/s41116-017-0011-z, 2018. a, b
Richardson, I. G. and Cane, H. V.: Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996–2009): Catalog and Summary of Properties, Sol. Phys., 264, 189–237, https://doi.org/10.1007/s11207-010-9568-6, 2010. a, b
Richardson, I. G. and Cane, H. V.: Near-Earth Interplanetary Coronal Mass Ejections Since January 1996 [data set], https://izw1.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm, last access: 5 May 2024. a
Rosso, O. A., Zunino, L., Pérez, D. G., Figliola, A., Larrondo, H. A., Garavaglia, M., Martín, M. T., and Plastino, A.: Extracting features of Gaussian self-similar stochastic processes via the Bandt-Pompe approach, Phys. Rev. E, 76, 061114, https://doi.org/10.1103/PhysRevE.76.061114, 2007. a, b
Ruzmaikin, A., Feynman, J., and Robinson, P.: Long-term persistence of solar activity, Sol. Phys., 149, 395–403, https://doi.org/10.1007/BF00690625, 1994. a, b
Smith, C. W. and Vasquez, B. J.: Driving and Dissipation of Solar-Wind Turbulence: What Is the Evidence?, Front. Astron. Space Sci., 7, 611909, https://doi.org/10.3389/fspas.2020.611909, 2021. a
Telloni, D., D'Amicis, R., Bruno, R., Perrone, D., Sorriso-Valvo, L., Raghav, A. N., and Choraghe, K.: Alfvénicity-related Long Recovery Phases of Geomagnetic Storms: A Space Weather Perspective, Astron. Astrophys., 916, 64, https://doi.org/10.3847/1538-4357/ac071f, 2021. a
Teodorescu, E., Echim, M., Munteanu, C., Zhang, T., Bruno, R., and Kovacs, P.: Inertial Range Turbulence of Fast and Slow Solar Wind at 0.72 AU and Solar Minimum, Astrophys. J. Lett., 804, L41, https://doi.org/10.1088/2041-8205/804/2/L41, 2015. a
Viall, N. M., DeForest, C. E., and Kepko, L.: Mesoscale Structure in the Solar Wind, Front. Astron. Space Sci., 8, 735034, https://doi.org/10.3389/fspas.2021.735034, 2021. a
Wawrzaszek, A. and Echim, M.: On the variation of intermittency of fast and slow solar wind with radial Distance, heliospheric Latitude, and Solar Cycle, Front. Astron. Space Sci., 7, 617113, https://doi.org/10.3389/fspas.2020.617113, 2021. a
Yordanova, E., Balogh, A., Noullez, A., and von Steiger, R.: Turbulence and intermittency in the heliospheric magnetic field in fast and slow solar wind, J. Geophys. Res.-Space, 114, A08101, https://doi.org/10.1029/2009JA014067, 2009. a
Zanin, M. and Olivares, F.: Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series, Commun. Phys., 4, 190, https://doi.org/10.1038/s42005-021-00696-z, 2021. a, b
Short summary
The solar wind is organised into slow and fast streams, interaction regions, and transient structures originating from solar eruptions. Their internal characteristics are not well understood. A more comprehensive understanding of such features can give insight itno physical processes governing their formation and evolution. Using tools from information theory, we find that the solar wind shows universal turbulent properties on smaller scales, while on larger scales, clear differences arise.
The solar wind is organised into slow and fast streams, interaction regions, and transient...