Articles | Volume 41, issue 2
https://doi.org/10.5194/angeo-41-375-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-41-375-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of ion composition on escape and morphology on Mars
Swedish Institute of Space Physics, Kiruna, Sweden
Department of Physics, Umeå University, Umeå, Sweden
Mats Holmström
Swedish Institute of Space Physics, Kiruna, Sweden
Xiao-Dong Wang
Swedish Institute of Space Physics, Kiruna, Sweden
Related authors
No articles found.
Etienne Behar, Shahab Fatemi, Pierre Henri, and Mats Holmström
Ann. Geophys., 40, 281–297, https://doi.org/10.5194/angeo-40-281-2022, https://doi.org/10.5194/angeo-40-281-2022, 2022
Short summary
Short summary
Despite the solar wind being turbulent in nature, numerical models of its interaction with obstacles have until now assumed it to be laminar. The code \textit{Menura} allows for the global simulation of the interaction between a fully turbulent solar wind and various bodies of the solar system. The code is illustrated by a first example: the interaction between a turbulent solar wind and a comet.
Mats Holmstrom
Ann. Geophys., 40, 83–89, https://doi.org/10.5194/angeo-40-83-2022, https://doi.org/10.5194/angeo-40-83-2022, 2022
Short summary
Short summary
We propose a new method that combines observations and models to estimate the loss of atmosphere by ion escape from unmagnetized planets. The proposed method allows us to estimate the ionospheric ion escape rate from one bow shock crossing using ion and magnetic field observations. This new technique is applicable to studies on how escape depends on different parameters, work on escape rates during extreme solar wind conditions, and research on escape in the early solar system and at exoplanets.
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Solar wind interactions with unmagnetized bodies
Warm protons at comet 67P/Churyumov–Gerasimenko – implications for the infant bow shock
Charlotte Goetz, Herbert Gunell, Fredrik Johansson, Kristie LLera, Hans Nilsson, Karl-Heinz Glassmeier, and Matthew G. G. T. Taylor
Ann. Geophys., 39, 379–396, https://doi.org/10.5194/angeo-39-379-2021, https://doi.org/10.5194/angeo-39-379-2021, 2021
Short summary
Short summary
Boundaries in the plasma around comet 67P separate regions with different properties. Many have been identified, including a new boundary called an infant bow shock. Here, we investigate how the plasma and fields behave at this boundary and where it can be found. The main result is that the infant bow shock occurs at intermediate activity and intermediate distances to the comet. Most plasma parameters behave as expected; however, some inconsistencies indicate that the boundary is non-stationary.
Cited articles
Alexander, C. J. and Russell, C. T.: Solar cycle dependence of the location of the Venus bow shock, Geophys. Res. Lett., 12, 369–371, https://doi.org/10.1029/GL012i006p00369, 1985. a
Araneda, J. A., Maneva, Y., and Marsch, E.: Preferential heating and acceleration of particles by Alfvén-cyclotron waves, Phys. Rev. Lett., 102, 175001, https://doi.org/10.1103/PhysRevLett.102.175001, 2009. a, b
Barabash, S., Fedorov, A., Lundin, R., and Sauvaud, J. A.: Martian atmospheric erosion rates, Science, 315, 501–503, https://doi.org/10.1126/science.1134358, 2007. a
Bourouaine, S., Marsch, E. and Neubauer, F. M.: On the relative speed and temperature ratio of solar wind alpha particles and protons: collisions versus wave effects, Astrophys. J. Lett., 728, 1–5, https://doi.org/10.1088/2041-8205/728/1/L3, 2011. a
Brecht, S. H., Ledvina, S. A., and Jakosky, B. M.: The role of the electron temperature on ion loss from Mars, J. Geophys. Res.-Space, 122, 8375–8390, https://doi.org/10.1002/2016JA023510, 2017. a, b, c, d
Bößwetter, A., Bagdonat, T., Motschmann, U., and Sauer, K.: Plasma boundaries at Mars: a 3-d simulation study, Ann. Geophys., 22, 4363–4379, https://doi.org/10.5194/angeo-22-4363-2004, 2004. a
Carlsson, E., Fedorov, A., Barabash, S., Budnik, E., Grigoriev, A., Gunell, H., Nilsson, H., Sauvaud, J. A., Lundin, R., Futaana, Y., Holmström, M., Andersson, H., Yamauchi, M., Winningham, J. D., Frahm, R. A., Sharber, J. R., Scherrer, J., Coates, A. J., Linder, D. R., Kataria, D. O., Kallio, E., Koskinen, H., Säles, T., Riihelä, P., Schmidt, W., Kozyra, J., Luhmann, J., Roelof, E., Williams, D., Livi, S., Curtis, C. C., Hsieh, K. C., Sandel, B. R., Grande, M., Carter, M., Thocaven, J.-J., McKenna-Lawler, S., Orsini, S., Cerulli-Irelli, R., Maggi, M., Wurz, P., Bochsler, P., Krupp, N., Woch, J., Fränz, M., Asamura, K., and Dierker, C.: Mass composition of the escaping plasma at Mars, Icarus, 182, 320–328, https://doi.org/10.1016/j.icarus.2005.09.020, 2006. a, b, c
Chaffin, M. S., Deighan, J., Schneider, N. M., and Stewart, A. I. F.: Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water, Nat. Geosci, 10, 174–178, https://doi.org/10.1038/ngeo2887, 2017. a
Chaufray, J. Y., Gonzalez-Galindo, F., Forget, F., Lopez-Valverde, A., M., Leblanc, Modolo, R., and Hess, S.: Variability of the hydrogen in the Martian upper atmosphere as simulated by a 3d atmosphere–exosphere coupling, Icarus, 245, 282–294, https://doi.org/10.1016/j.icarus.2014.08.038, 2015. a
Dong, C., Bougher, S. W., Ma, Y., Toth, G., Nagy, A. F., and Najib, D.: Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multifluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708–2715, https://doi.org/10.1002/2014GL059515, 2014. a, b
Dong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., Curry, S. M., Harada, Y., Luhmann, J. G., and Jakosky, B. M.: Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel, Geophys. Res. Lett., 42, 8942–8950, https://doi.org/10.1002/2015GL065346, 2015. a, b, c
Dong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., Eparvier, F., Andersson, L., Mitchell, D., and Jakosky, B. M.: Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations, J. Geophys. Res.-Space, 122, 4009–4022, https://doi.org/10.1002/2016JA023517, 2017. a, b, c, d, e, f, g, h
Dubinin, E., Fraenz, M., Pätzold, M., McFadden, J., Halekas, J. S., DiBraccio, G. A., Connerney, J. E. P., Eparvier, F., Brain, D., Jakosky, B. M., Vaisberg, O., and Zelenyi, L.: The effect of solar wind variations on the escape of oxygen ions from Mars through different channels: MAVEN observations, J. Geophys. Res.-Space, 122, 11285–11301, https://doi.org/10.1002/2017JA024741, 2017. a, b
Ergun, R., Andersson, L., Fowler, C., Woodson, A. K., Weber, T. D., Delory, G. T., Andrews, D. J., Eriksson, A. I., McEnulty, T., Morooka, M. W., Stewart, A. I. F., Mahaffy, P. R., and Jakosky, B. M.: Enhanced O loss at Mars due to an ambipolar electric field from electron heating, J. Geophys. Res.-Space, 121, 4668–4678, https://doi.org/10.1002/2016JA022349, 2016. a, b
Fang, X., Ma, Y., Brain, D., Dong, Y., and Lillis, R.: Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time-dependent MHD study, J. Geophys. Res.-Space, 120, 10–926, https://doi.org/10.1002/2015JA021605, 2015. a, b
Fowler, C. M., McFadden, J., Hanley, K. G., Mitchell, D. L., Curry, S., and Jakosky, B.: In-situ measurements of ion density in the Martian ionosphere: Underlying structure and variability observed by the MAVEN-STATIC instrument, J. Geophys. Res.-Space, 127, e2022JA030352, https://doi.org/10.1029/2022JA030352, 2022. a
Fox, J. L. and Hać, A. B.: Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method, Icarus, 204, 527–544, https://doi.org/10.1016/j.icarus.2009.07.005, 2009. a
Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q., MacNeice, P., Rosner, R., Truran, J. W., and Tufo, H.: FLASH:
An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear
flashes, Astrophys. J., Suppl. Ser., 131, 273–334, https://doi.org/10.1086/317361, 2000. a
Garnier, P., Jacquey, C., Gendre, X., Génot, V., Mazelle, C., Fang, X., Gruesbeck, J. R., Sánchez-Cano, B., and Halekas, J. S.: The influence of crustal magnetic fields on the Martian bow shock location: A statistical analysis of MAVEN and Mars Express observations, J. Geophys. Res.-Space, 127, e2021JA030146, https://doi.org/10.1029/2021JA030146, 2022. a
Halekas, J. S., Brain, D. A., Luhmann, J. G., DiBraccio, G. A., Ruhunusiri, S., Harada, Y., Fowler, C. M., Mitchell, D. L., Connerney, J. E. P., Espley, J. R., Mazelle, C., and Jakosky, B. M.: Flows, fields, and forces in the Mars-Solar wind interaction, J. Geophys. Res.-Space, 122, 11–320, https://doi.org/10.1002/2017JA024772, 2017. a
Halekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., McFadden, J. P., Connerney, J. E. P., Espley, J. R., Eparvier, F., Luhmann, J. G., and Jakosky, B. M.: Structure, dynamics, and seasonal variability of the Mars-solar wind interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science results, J. Geophys. Res.-Space, 122, 547–578, https://doi.org/10.1002/2016JA023167, 2017. a
Hall, B. E. S., Lester, M., S ́anchez-Cano, B., Nichols, J. D., Andrews, D. J., Edberg, N. J. T., Opgenoorth, H. J., Fränz, M., Holmström, M., Ramstad, R., Witasse, O., Cartacci, M., Cicchetti, A., Noschese, R., and Orosei, R.: Annual variations in the Martian bow shock location as observed by the Mars Express mission, J. Geophys. Res.-Space, 121, 11–474, https://doi.org/10.1002/2016JA023316, 2016. a
Harnett, E. M. and Winglee, R. M.: Three-dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events, J. Geophys. Res.-Space, 111, A09213, https://doi.org/10.1029/2006JA011724, 2006. a
Hellinger, P. and Trávníček, P. M.: Protons and alpha particles in the expanding solar wind: Hybrid simulations, J. Geophys. Res.-Space, 118, 5421–5430, https://doi.org/10.1002/jgra.50540, 2013. a, b
Holmström, M.: Hybrid modeling of plasmas, Springer, 451–458, https://doi.org/10.1007/978-3-642-11795-4_48, 2010. a
Holmström, M.: Estimating ion escape from unmagnetized planets, Ann. Geophys., 40, 83–89, https://doi.org/10.5194/angeo-40-83-2022, 2022. a, b
Horaites, K., Andersson, L., Schwartz, S. J., Xu, S., Mitchell, D. L., Mazelle, C., Halekas, J., and Gruesbeck, J.: Observations of energized electrons in the Martian magnetosheath, J. Geophys. Res.-Space, 126, e2020JA028984, https://doi.org/10.1029/2020JA028984, 2021. a
Inui, S., Seki, K., Sakai, S., Brain, D. A., Hara, T., McFadden, J. P., Halekas, J. S., Mitchell, D. L., DiBraccio, G. A., and Jakosky B. M.: Statistical study of heavy ion outflows from Mars observed in the martian-induced magnetotail by MAVEN, J. Geophys. Res.-Space, 124, 5482–5497, https://doi.org/10.1029/2018JA026452, 2019. a, b, c
Jakosky, B. M., Brain, D., Chaffin, M., Curry, S., Deighan, J., Grebowsky, J., Halekas, J., Leblanc, F., Lillis, R., Luhmann, J. G., Andersson, L., Andre, N., Andrews, D., Baird, D., Baker, D., Bell, J., Benna, M., Bhattacharyya, D., Bougher, S., Bowers, C., Chamberlin, P., Chaufray, J. Y., Clarke, J., Collinson, G., Combi, M., Connerney, J., Connour, K., Correira, J., Crabb, K., Crary, F., Cravens, T., Crismani, M., Delory, G., Dewey, R., DiBraccio, G., Dong, C., Dong, Y., Dunn, P., Egan, H., Elrod, M., England, S., Eparvier, F., Ergun, R., Eriksson, A., Esman, T., Espley, J., Evans, S., Fallows, K., Fang, X., Fillingim, M., Flynn, C., Fogle, A., Fowler, C., Fox, J., Fujimoto, M., Garnier, P., Girazian, Z., Groeller, H., Gruesbeck, J., Hamil, O., Hanley, K. G., Hara, T., Harada, Y., Hermann, J., Holmberg, M., Holsclaw, G., Houston, S., Inui, S., Jain, S., Jolitz, R., Kotova, A., Kuroda, T., Larson, D., Lee, Y., Lee, C., Lefevre, F., Lentz, C., Lo, D., Lugo, R., Ma Y. J., Mahaffy, P., Marquette, M. L., Matsumoto, Y., Mayyasi, M., Mazelle, C., McClintock, W., McFadden, J., Medvedev, A., Mendillo, M., Meziane, K., Milby, Z., Mitchell, D., Modolo, R., Montmessin, F., Nagy, A., Nakagawa, H., Narvaez, C., Olsen, K., Pawlowski, D., Peterson, W., Rahmati, A., Roeten, K., Romanelli, N., Ruhunusiri, S., Russell, C., Sakai, S., Schneider, N., Seki, K., Sharrar, R., Shaver, S., Siskind, D. E., Slipski, M., Soobiah, Y., Steckiewicz, M., Stevens, M. H., Stewart, I., Stiepen, v., Stone, S., Tenishev, V., Terada, N., Terada, K., Thiemann, E., Tolson, R., Toth, G., Trovato, J., Vogt, M., Weber, T., Withers, P., Xu, S., Yelle, R., Yiğit, E., and Zurek, R.: Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time, Icarus, 315, 146–157, https://doi.org/10.1016/j.icarus.2018.05.030, 2018. a
Jakosky, B. M., Slipski, M., Benna, M., Mahaffy, P., Elrod, M., Yelle, R., Stone, S., and Alsaeed, N.: Mars'’ atmospheric history derived from upper-atmosphere measurements of 38Ar 36Ar, Science, 355, 1408–1410, https://doi.org/10.1126/science.aai772, 2017. a
Kallio, E., Fedorov, A., Budnik, E., Barabash, S., Jarvinen, R., and Janhunen, P.: On the properties of O+ and O ions in a hybrid model and in Mars Express IMA/ASPERA-3 data: A case study, Planet. Space Sci., 56, 1204–1213, https://doi.org/10.1016/j.pss.2008.03.007, 2008. a
Kar, J., Mahajan, K. K., and Kohli, R.: On the outflow of O ions at Mars, J. Geophys. Res. Planets, 101, 12747–12752, https://doi.org/10.1029/95JE03526, 1996. a
Leblanc, F., Martinez, A., Chaufray, J. Y., Modolo, R., Hara, T., Luhmann, J., Lillis, R., Curry, S., McFadden, J., Halekas, J., and Jakosky, B.: On Mars’s atmospheric sputtering after MAVEN's first Martian year of measurements, Geophys. Res. Lett., 45, 685–4691, https://doi.org/10.1002/2018GL077199, 2018. a
Ledvina, S. A., Brecht, S. H., Brain, D. A., and Jakosky, B. M.: Ion escape rates from Mars: Results from hybrid simulations compared to MAVEN observations, J. Geophys. Res.-Space, 122, 8391–8408, https://doi.org/10.1002/2016JA023521, 2017. a
Leelavathi, V., Rao, N. V., and Rao, S. V. B.: Gravity wave driven variability in the Mars ionosphere-thermosphere system, Icarus, 115430, https://doi.org/10.1016/j.icarus.2023.115430, 2023. a
Lillis, R. J., Deighan, J., Fox, J. L., Bougher, S. W., Lee, Y., Combi, M. R., Thomas, E. C., Ali Rahmati, P. R., Mahaffy, M. B., and Meredith, K. E.: Photochemical escape of oxygen from Mars: First results from MAVEN in situ data, J. Geophys. Res.-Space, 122, 3815–3836, https://doi.org/10.1002/2016JA023525, 2017. a
Lundin, R., Zakharov, A., Pellinen, R., Borg, H., Hultqvist, B., Pissarenko, N., Dubinin, E. M., Barabash, S. W., Liede, I., and Koskinen H.: First measurements of the ionospheric plasma escape from Mars, Nature, 341, 609–612, https://doi.org/10.1038/341609a0, 1989. a
Lundin, R., Barabash, S., Futaana, Y., Sauvaud, J.-A., Fedorov, A., and de Tejada, H. P.: Ion flow and momentum transfer in the Venus plasma environment, Icarus, 215, 751–758, https://doi.org/10.1016/j.icarus.2011.06.034, 2011. a, b
Lundin, R., Barabash, S., Futaana, Y., Holmström, M., Perez-de-Tejada, H., and Sauvaud, J. A.: A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation, Geophys. Res. Lett., 40, 1273–1278, https://doi.org/10.1002/grl.50309, 2013. a, b
Ma, Y. J. and Nagy, A. F.: Ion escape fluxes from Mars, Geophys. Res. Lett., 34, L08201, https://doi.org/10.1029/2006GL029208, 2007. a
Ma, Y. J., Fang, X., Nagy, A. F., Russell, C. T., and Toth, G.: Martian ionospheric responses to dynamic pressure enhancements in the solar wind, J. Geophys. Res.-Space, 119, 1272–1286, https://doi.org/10.1002/2013JA019402, 2014. a
Ma, Y. J., Dong, C. F., Toth, G., van der Holst, B., Nagy, A. F., Russell, C. T., Bougher, S., Fang, X., Halekas, J. S., Espley, J. R., Mahaffy, P. R., Benna, M., McFadden, J., and Jakosky, B. M.: Importance of ambipolar electric field in driving ion loss from Mars: Results from a multifluid MHD model with the electron pressure equation included, J. Geophys. Res.-Space, 124, 9040–9057, https://doi.org/10.1029/2019JA027091, 2019. a, b, c, d, e
Marsch, K. H., Mühlhäuser, E., Rosenbauer, H., Schwenn, R., and Neubauer, F. M.: Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 au, J. Geophys. Res.-Space, 87, 35–51, https://doi.org/10.1029/JA087iA01p00035, 1982. a
Mazelle, C., Winterhalter, D., Sauer, K., Trotignon, J. G., Acuna, M. H., Baumgärtel, K., Bertucci, C., Brain, D. A., Brecht, S. H., Delva, M., Dubinin, E., Øieroset M., and Slavin, J.: Bow shock and upstream phenomena at Mars, Space Sci. Rev., 111, 115–181, https://doi.org/10.1023/B:SPAC.0000032717.98679.d0, 2004. a
Modolo, R., Hess, S., Mancini, M., Leblanc, F., Chaufray, J. Y., Brain, D., Leclercq, L., Hernández, R. E., Chanteur, G., Weill, P., Galindo, F. G., Forget, F., Yagi, M., and Mazelle, C.: Mars-solar wind interaction: LatHyS, an improved parallel 3-d multispecies hybrid model, J. Geophys. Res.-Space, 121, 6378–6399, https://doi.org/10.1002/2015JA022324, 2016. a
Ramstad, R. and Barabash, S.: Do intrinsic magnetic fields protect planetary atmospheres from stellar winds? lessons from ion measurements at Mars, Venus, and Earth, Space Sci. Rev., 217, 1–39, https://doi.org/10.1007/s11214-021-00791-1, 2021. a
Ramstad, R., Barabash, S., Futaana, Y., Nilsson, H., and Holmström, M.: Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate, Geophys. Res. Lett., 43, 10–574, https://doi.org/10.1002/2016GL070135, 2016. a
Regoli, L. H., C. Dong, Y. M., Dubinin, E., Manchester, W. B., Bougher, S. W., and Welling, D. T.: Multispecies and Multifluid MHD approaches for the study of ionospheric escape at Mars, J. Geophys. Res.-Space, 123, 7370–738, https://doi.org/10.1029/2017JA025117, 2018. a, b, c, d
Rojas-Castillo, D., Nilsson, H., and Stenberg Wieser, G.: Mass composition of the escaping flux at Mars: MEX observations, J. Geophys. Res.-Space, 123, 8806–8822, https://doi.org/10.1029/2018JA025423, 2018. a, b, c
Stansby, D., Perrone, D., Matteini, L., Horbury, T. S., and Salem, C. S.: Alpha particle thermodynamics in the inner heliosphere fast solar wind, Astron. Astrophys., 623, L2, https://doi.org/10.1051/0004-6361/201834900, 2019. a
Szegö, K., Glassmeier, K. H., Bingham, R., Bogdanov, A., Fischer, C., Haerendel, G., Brinca, A., Cravens, T., Dubinin, E., Sauer, K., Fisk, L., Gombosi, T., Schwadron, N., Isenberg, P., Lee, M., Mazelle, C., Möbius, E., Motschmann, U., Shapiro, V. D., Tsurutani, B., and Zank, G.: Physics of mass loaded plasmas, Space Sci. Rev., 94, 429–671, https://doi.org/10.1023/A:1026568530975, 2000.
a
Vignes, D., Mazelle, C., Rme, H., Acuña, M. H., Connerney, J. E. P., Lin, R. P., Mitchell, D. L., Cloutier, P., Crider, D. H., and Ness, N. F.: The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars Global Surveyor, J. Geophys. Res.-Space, 27, 49–52, https://doi.org/10.1029/1999GL010703, 2000. a
Vignes, D., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Reme, H., and Mazelle, C.: Factors controlling the location of the bow shock at Mars, J. Geophys. Res.-Space, 29, 42-1–42-4, https://doi.org/10.1029/2001GL014513, 2002. a
Von Steiger, R., J. Geiss, G. G., and Galvin, A. B.: Kinetic properties of heavy ions in the solar wind from SWICS/Ulysses, Space Sci. Rev., 72, 71–76, https://doi.org/10.1007/BF00768756, 1995. a
Weber, T., Brain, D., Xu, S., Mitchell, D., Espley, J., Mazelle, C., McFadden, J. P., and Jakosky, B.: Martian crustal field influence on O+ and O escape as measured by MAVEN, J. Geophys. Res.-Space, 126, e2021JA029234, https://doi.org/10.1029/2021JA029234, 2021. a
Wilson, I. L. B., Stevens, M. L., Kasper, J. C., Klein, K. G., Maruca, B. A., Bale, S. D., Bowen, T. A., Pulupa, M. P. and Salem, C. S.: The statistical properties of solar wind temperature parameters near 1 au, Astrophys. J. Suppl. Ser, 236, 1–15, https://doi.org/10.3847/1538-4365/aab71c, 2018. a
Xu, S., Schwartz, S. J., avid L. Mitchell, Horaites, K., Andersson, L., Halekas, J., Mazelle, C., and Gruesbeck, J. R.: Cross-shock electrostatic potentials at Mars inferred from MAVEN measurements, J. Geophys. Res.-Space, 126, e2020JA029064, https://doi.org/10.1029/2020JA029064, 2021a. a
Xu, S., Mitchell, D. L., Ma, Y., Weber, T., Brain, D. A., Halekas, J., Ruhunusiri, S., DiBraccio, G., and Mazelle, C.: Global ambipolar potentials and electric fields at Mars inferred from MAVEN observations, J. Geophys. Res.-Space, 126, e2021JA029764, https://doi.org/10.1029/2021JA029764, 2021b. a, b, c, d
Zhang, Q., Gu, H., Cui, J., Cheng, Y. M., He, Z. G., Zhong, J. H., He, F., and Wei Y.: Atomic oxygen escape on Mars driven by electron impact excitation and ionization, Astron. J., 159, 1–6, https://doi.org/10.3847/1538-3881/ab6297, 2020. a
Short summary
We improve a method for modeling the interaction between solar wind and Mars that uses a hybrid model to fit the observed bow shock location to determine a corresponding exobase ion upflux. We applied the method to one Mars Atmosphere and Volatile Evolution orbit to study the effects on ion escape estimates of heavy-ion composition in the ionosphere, alpha particles in the solar wind, solar-wind velocity aberration, and electron temperature. We also studied the morphology of the escaping ions.
We improve a method for modeling the interaction between solar wind and Mars that uses a hybrid...