Articles | Volume 39, issue 5
https://doi.org/10.5194/angeo-39-945-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-945-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Space weather study through analysis of solar radio bursts detected by a single-station CALLISTO spectrometer
Theogene Ndacyayisenga
CORRESPONDING AUTHOR
Department of Physics, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
Ange Cynthia Umuhire
Department of Physics, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
Jean Uwamahoro
College of Education, University of Rwanda, P.O. Box 55, Rwamagana, Rwanda
Christian Monstein
Istituto Ricerche Solari (IRSOL), Università della Svizzera italiana (USI), 6605 Locarno–Monti, Switzerland
Related authors
Theogene Ndacyayisenga, Jean Uwamahoro, Jean Claude Uwamahoro, Daniel Izuikedinachi Okoh, Kantepalli Sasikumar Raja, Akeem Babatunde Rabiu, Christian Kwisanga, and Christian Monstein
Ann. Geophys., 42, 313–329, https://doi.org/10.5194/angeo-42-313-2024, https://doi.org/10.5194/angeo-42-313-2024, 2024
Short summary
Short summary
This article reports the first observations of 32 type II bursts in cycle 25 from May 2021 to December 2022. The impacts of space weather on ionospheric total electron content (TEC) enhancement, as measured by the rate of change of TEC index (ROTI), are also studied. According to the current analysis, 19 of 32 type II bursts are connected with imminent space weather occurrences, such as radio blackouts and polar cap absorption events, indicating a high likelihood of space weather disturbance.
Theogene Ndacyayisenga, Jean Uwamahoro, Jean Claude Uwamahoro, Daniel Izuikedinachi Okoh, Kantepalli Sasikumar Raja, Akeem Babatunde Rabiu, Christian Kwisanga, and Christian Monstein
Ann. Geophys., 42, 313–329, https://doi.org/10.5194/angeo-42-313-2024, https://doi.org/10.5194/angeo-42-313-2024, 2024
Short summary
Short summary
This article reports the first observations of 32 type II bursts in cycle 25 from May 2021 to December 2022. The impacts of space weather on ionospheric total electron content (TEC) enhancement, as measured by the rate of change of TEC index (ROTI), are also studied. According to the current analysis, 19 of 32 type II bursts are connected with imminent space weather occurrences, such as radio blackouts and polar cap absorption events, indicating a high likelihood of space weather disturbance.
Cited articles
Alissandrakis, C. E., Nindos, A., Patsourakos, S., Kontogeorgos, A.,
and Tsitsipis, P.: A tiny event producing an interplanetary type III
burst, Astron. Astrophys., 582, A52, https://doi.org/10.1051/0004-6361/201526265, 2015. a
Bain, H. M. and Fletcher, L.: Hard X-ray emission from a flare-related
jet, Astron. Astrophys., 508, 1443–1452, https://doi.org/10.1051/0004-6361/200911876, 2009. a
Bastian, T. S.: Radio Emission from Flare Stars, Sol. Phys., 130, 265–294,
https://doi.org/10.1007/BF00156794, 1990. a
Bastian, T. S.: The Frequency Agile Solar Radiotelescope, Solar and Space Weather Radiophysics. Astrophysics and Space Science Library, Vol. 314, Springer, Dordrecht, 47–69,
https://doi.org/10.1007/1-4020-2814-8_3, 2004. a
Bastian, T. S., Benz, A. O., and Gary, D. E.: RADIO EMISSION FROM SOLAR FLARES,
Annu. Rev. Astron. Astrophys., 36, 131–188,
https://doi.org/10.1146/annurev.astro.36.1.131, 1998. a, b
Benz, A. O. and Tarnstrom, G. L.: Synchrotron or plasma process emission
in narrow-band type IVdm bursts?, Astrophys. J., 204, 597–603,
https://doi.org/10.1086/154208, 1976. a
Benz, A. O., Monstein, C., and Meyer, H.: Callisto A New Concept for
Solar Radio Spectrometers, Sol. Phys., 226, 143–151,
https://doi.org/10.1007/s11207-005-5688-9, 2005. a, b
Benz, A. O., Monstein, C., Meyer, H., Manoharan, P. K., Ramesh, R.,
Altyntsev, A., Lara, A., Paez, J., and Cho, K. S.: A World-Wide Net
of Solar Radio Spectrometers: e-CALLISTO, Earth Moon Planet., 104,
277–285, https://doi.org/10.1007/s11038-008-9267-6, 2009. a, b, c
Boischot, A., Rosolen, C., Aubier, M. G., Daigne, G., Genova, F.,
Leblanc, Y., Lecacheux, A., de La Noe, J., and Moller-Pedersen, B.:
A new high-grain, broadband, steerable array to study Jovian decametric
emission, International Journal of Solar System Studies, Elsevier, 43, 399–407, https://doi.org/10.1016/0019-1035(80)90185-2, 1980. a
Bougeret, J. L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz,
K., Monson, S. J., Monge, N., Friel, L., Meetre, C. A., Perche, C.,
Sitruk, L., and Hoang, S.: Waves: The Radio and Plasma Wave
Investigation on the Wind Spacecraft, Space Sci. Rev., 71, 231–263,
https://doi.org/10.1007/BF00751331, 1995. a
Braude, S. I., Men, A. V., and Sodin, L. G.: The UTR-2 decametric-wave
radio telescope, Antenny, 26, 3–15, 1978. a
Braude, S. Y.: Decametric radioastronomy, Astrophysics on the Threshold of the 21st Century, 81–102, 1992. a
Braude, S. Y., Megn, A. V., Rashkovsky, S. L., Sharykin, N. K.,
Inyutin, G. A., Shepelev, V. A., and Konovalenko, A. A.: The Ukrainian
radio interferometer system URAN for studies in decametric wavelengths band
(Abstract), in: Planetary Radio Emissions III, p. 183, 1992. a
Brueckner, G. E., Howard, R. A., Koomen, M. J., Korendyke, C. M.,
Michels, D. J., Moses, J. D., Socker, D. G., Dere, K. P., Lamy,
P. L., Llebaria, A., Bout, M. V., Schwenn, R., Simnett, G. M.,
Bedford, D. K., and Eyles, C. J.: The Large Angle Spectroscopic
Coronagraph (LASCO), Sol. Phys., 162, 357–402, https://doi.org/10.1007/BF00733434,
1995. a
Cairns, I. H., Knock, S. A., Robinson, P. A., and Kuncic, Z.: Type II
Solar Radio Bursts: Theory and Space Weather Implications, Space Sci. Rev.,
107, 27–34, https://doi.org/10.1023/A:1025503201687, 2003. a
Cane, H. V. and Erickson, W. C.: Studies of Space Weather Using Solar
Radio Bursts, in: From Clark Lake to the Long Wavelength Array: Bill
Erickson's Radio Science, edited by: Kassim, N., Perez, M., Junor, W.,
and Henning, P., Vol. 345, Astronomical Society of the Pacific
Conference Series, p. 133, 2005. a
Cane, H. V. and Reames, D. V.: Soft X-Ray Emissions, Meter-Wavelength
Radio Bursts, and Particle Acceleration in Solar Flares, Astrophys. J., 325, 895,
https://doi.org/10.1086/166060, 1988. a
Carley, E. P., Baldovin, C., Benthem, P., Bisi, M. M., Fallows,
R. A., Gallagher, P. T., Olberg, M., Rothkaehl, H., Vermeulen, R.,
Vilmer, N., and Barnes, D.: Radio observatories and instrumentation used
in space weather science and operations, J. Space Weather Space
Clim., 10, 7, https://doi.org/10.1051/swsc/2020007, 2020. a, b
Caroubalos, C., Maroulis, D., Patavalis, N., Bougeret, J. L., Dumas,
G., Perche, C., Alissand rakis, C., Hillaris, A., Moussas, X.,
Preka-Papadema, P., Kontogeorgos, A., Tsitsipis, P., and Kanelakis,
G.: The New Multichannel Radiospectrograph ARTEMIS-IV/HECATE, of the
University of Athens, Exp. Astron., 11, 23–32, 2001. a
Carrano, C. S., Bridgwood, C. T., and Groves, K. M.: Impacts of the December
2006 solar radio bursts on the performance of GPS, Radio Sci., 44, RS0A25,
https://doi.org/10.1029/2008RS004071, 2009. a
Cerruti, A. P., Kintner Jr., P. M., Gary, D. E., Mannucci, A. J., Meyer, R. F.,
Doherty, P., and Coster, A. J.: Effect of intense December 2006 solar radio
bursts on GPS receivers, Space Weather, 6, S10D07,
https://doi.org/10.1029/2007SW000375, 2008. a
Chifor, C., Isobe, H., Mason, H. E., Hannah, I. G., Young, P. R.,
Del Zanna, G., Krucker, S., Ichimoto, K., Katsukawa, Y., and
Yokoyama, T.: Magnetic flux cancellation associated with a recurring solar
jet observed with Hinode, RHESSI, and STEREO/EUVI, Astron. Astrophys., 491, 279–288,
https://doi.org/10.1051/0004-6361:200810265, 2008. a
Cliver, E. W., Webb, D. F., and Howard, R. A.: On the origin of solar
metric type II bursts, Sol. Phys, 187, 89–114,
https://doi.org/10.1023/A:1005115119661, 1999. a
Dewdney, P. E., Hall, P. J., Schilizzi, R. T., and Lazio, T. J. L. W.:
The Square Kilometre Array, Proc. IEEE, 97, 1482–1496, 2009. a
Dulk, G. A.: Radio Emission from the Sun and Stars, Annu. Rev. Astron.
Astrophys., 23, 169–224, https://doi.org/10.1146/annurev.aa.23.090185.001125,
1985. a
Ganse, U., Kilian, P., Vainio, R., and Spanier, F.: Emission of Type
II Radio Bursts - Single-Beam Versus Two-Beam Scenario, Sol. Phys, 280,
551–560, https://doi.org/10.1007/s11207-012-0077-7, 2012. a
Gary, D. E., Bastian, T. S., Chen, B., Fleishman, G. D., and
Glesener, L.: Radio Observations of Solar Flares, in: Science with a Next
Generation Very Large Array, edited by: Murphy, E., Vol. 517,
Astronomical Society of the Pacific Conference Series, p. 99, 2018. a
Ginzburg, V. L. and Zhelezniakov, V. V.: On the Possible Mechanisms of
Sporadic Solar Radio Emission (Radiation in an Isotropic Plasma), Sov.
Astron., 2, 653, 1958. a
Gorgutsa, R. V., Gnezdilov, A. A., Markeev, A. K., and Sobolev, D. E.:
An upgrade of the izmiran's solar digital radio spectrograph: First
results, Astronomical and Astrophysical Transactions, 20, 547–549,
https://doi.org/10.1080/10556790108213597, 2001. a
Guhathakurta, M., Davila, J. M., and Gopalswamy, N.: The International Space
Weather Initiative (ISWI), Space Weather, 11, 327–329,
https://doi.org/10.1002/swe.20048, 2013. a
Guidice, D. A., Cliver, E. W., Barron, W. R., and Kahler, S.: The Air
Force RSTN System, in: Bulletin of the American Astronomical Society,
13, 553, 1981. a
Haubold, H. J., Gadimova, S., and Balogh, W.: Contributions of the
United Nations Office for Outer Space Affairs to the International Space
Weather Initiative (ISWI), arXiv e-prints, arXiv:1011.5663, 2010. a
Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J. S., Socker,
D. G., Plunkett, S. P., Korendyke, C. M., Cook, J. W., Hurley, A.,
Davila, J. M., Thompson, W. T., St Cyr, O. C., Mentzell, E.,
Mehalick, K., Lemen, J. R., Wuelser, J. P., Duncan, D. W., Tarbell,
T. D., Wolfson, C. J., Moore, A., Harrison, R. A., Waltham, N. R.,
Lang, J., Davis, C. J., Eyles, C. J., Mapson-Menard, H., Simnett,
G. M., Halain, J. P., Defise, J. M., Mazy, E., Rochus, P., Mercier,
R., Ravet, M. F., Delmotte, F., Auchere, F., Delaboudiniere, J. P.,
Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S.,
Stephens, V., Maahs, G., Baugh, R., McMullin, D., and Carter, T.:
Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), Space
Sci. Rev., 136, 67–115, https://doi.org/10.1007/s11214-008-9341-4, 2008. a
Innes, D. E., Cameron, R. H., and Solanki, S. K.: EUV jets, type III
radio bursts and sunspot waves investigated using SDO/AIA observations,
Astron. Astrophys., 531, L13, https://doi.org/10.1051/0004-6361/201117255, 2011. a
Kaiser, M. L.: The STEREO mission: an overview, Adv. Space Res.,
36, 1483–1488, https://doi.org/10.1016/j.asr.2004.12.066, 2005. a
Kishore, P., Kathiravan, C., Ramesh, R., Rajalingam, M., and Barve,
I. V.: Gauribidanur Low-Frequency Solar Spectrograph, Sol. Phys, 289,
3995–4005, https://doi.org/10.1007/s11207-014-0539-1, 2014. a
Klassen, A., Gómez-Herrero, R., and Heber, B.: Electron Spikes, Type III
Radio Bursts and EUV Jets on 22 February 2010, Sol. Phys., 273, 413–419,
https://doi.org/10.1007/s11207-011-9735-4, 2011. a
Klassen, A., Gómez-Herrero, R., Heber, B., Kartavykh, Y.,
Dröge, W., and Klein, K. L.: Solar origin of in-situ
near-relativistic electron spikes observed with SEPT/STEREO, Astron. Astrophys., 542, A28,
https://doi.org/10.1051/0004-6361/201118626, 2012. a
Kondo, T., Isobe, T., Igi, S., Watari, S.-I., and Tokumaru, M.: The
New Solar Radio Observation System At Hiraiso, Communications Research
Laboratory Review, 40, 85, 1994. a
Krucker, S., Kontar, E. P., Christe, S., Glesener, L., and Lin, R. P.:
Electron acceleration associated with solar jets,
Astrophys. J., 742, 82, https://doi.org/10.1088/0004-637x/742/2/82, 2011. a
Kumari, A., Ramesh, R., Kathiravan, C., and Gopalswamy, N.: New
Evidence for a Coronal Mass Ejection-driven High Frequency Type II Burst near
the Sun, Astrophys. J., 843, 10, https://doi.org/10.3847/1538-4357/aa72e7, 2017a. a
Kumari, A., Ramesh, R., Kathiravan, C., and Wang, T. J.: Addendum to:
Strength of the Solar Coronal Magnetic Field - A Comparison of Independent
Estimates Using Contemporaneous Radio and White-Light Observations, Sol.
Phys, 292, 177, https://doi.org/10.1007/s11207-017-1203-3, 2017b. a
Kumari, A., Morosan, D. E., and Kilpua, E. K. J.: On the Occurrence of
Type IV Solar Radio Bursts in Solar Cycle 24 and Their Association with
Coronal Mass Ejections, Astrophys. J., 906, 79, https://doi.org/10.3847/1538-4357/abc878, 2021. a, b, c
Lemen, J. R., Title, A. M., Akin, D. J., Boerner, P. F., Chou, C.,
Drake, J. F., Duncan, D. W., Edwards, C. G., Friedlaender, F. M.,
Heyman, G. F., Hurlburt, N. E., Katz, N. L., Kushner, G. D., Levay,
M., Lindgren, R. W., Mathur, D. P., McFeaters, E. L., Mitchell, S.,
Rehse, R. A., Schrijver, C. J., Springer, L. A., Stern, R. A.,
Tarbell, T. D., Wuelser, J.-P., Wolfson, C. J., Yanari, C.,
Bookbinder, J. A., Cheimets, P. N., Caldwell, D., Deluca, E. E.,
Gates, R., Golub, L., Park, S., Podgorski, W. A., Bush, R. I.,
Scherrer, P. H., Gummin, M. A., Smith, P., Auker, G., Jerram, P.,
Pool, P., Soufli, R., Windt, D. L., Beardsley, S., Clapp, M.,
Lang, J., and Waltham, N.: The Atmospheric Imaging Assembly (AIA) on the
Solar Dynamics Observatory (SDO), Sol. Phys., 275, 17–40,
https://doi.org/10.1007/s11207-011-9776-8, 2012. a
Lin, R. P., Potter, D. W., Gurnett, D. A., and Scarf, F. L.: Energetic
electrons and plasma waves associated with a solar type III radio burst,
Astrophys. J., 251, 364–373, https://doi.org/10.1086/159471, 1981. a
Lin, R. P., Levedahl, W. K., Lotko, W., Gurnett, D. A., and Scarf,
F. L.: Evidence for Nonlinear Wave-Wave Interactions in Solar Type III Radio
Bursts, Astrophys. J., 308, 954, https://doi.org/10.1086/164563, 1986. a
Lobzin, V., Cairns, I. H., and Robinson, P. A.: Solar Cycle Variations
of the Occurrence of Coronal Type III Radio Bursts and a New Solar Activity
Index, Astrophys. J., 736, L20, https://doi.org/10.1088/2041-8205/736/1/L20, 2011. a
Lobzin, V. V., Cairns, I. H., Robinson, P. A., Steward, G., and
Patterson, G.: Automatic recognition of type III solar radio bursts:
Automated Radio Burst Identification System method and first observations,
Space Weather, 7, S04002, https://doi.org/10.1029/2008SW000425, 2009. a
Mahender, A., Sasikumar Raja, K., Ramesh, R., Panditi, V., Monstein,
C., and Ganji, Y.: A Statistical Study of Low-Frequency Solar Radio Type
III Bursts, Sol. Phys, 295, 153, https://doi.org/10.1007/s11207-020-01722-z, 2020. a, b, c, d
Marqué, C., Klein, K.-L., Monstein, C., Opgenoorth, H.,
Pulkkinen, A., Buchert, S., Krucker, S., Van Hoof, R., and
Thulesen, P.: Solar radio emission as a disturbance of aeronautical
radionavigation, J. Space Weather Spac., 8, A42,
https://doi.org/10.1051/swsc/2018029, 2018. a
Megn, A. V., Braude, S. Y., Rashkovskiy, S. L., Sharykin, N. K.,
Shepelev, V. A., Inutin, G. A., Khristenko, A. D., Bulatsen, V. G.,
Brazhenko, A. I., Koshovyy, V. V., Romanchev, Y. V., Thesevich,
V. P., and Galanin, V. P.: URAN System of the Decametric Interferometers
(I), Russian Radio Physics and Radio Astronomy, 2, 385–402, 1997 (in Russian). a
Melrose, D. B.: Plasma astrohysics. Nonthermal processes in diffuse
magnetized plasmas – Vol. 1: The emission, absorption and transfer of waves in
plasmas; Vol. 2, Astrophys. Appl., 1980. a
Mercier, C.: Evidence of Large Scale Diverging Paths in the Solar Corona for
Type III Bursts Exciters, Sol. Phys., 45, 169–179,
https://doi.org/10.1007/BF00152229, 1975. a
Miteva, R., Samwel, S. W., and Krupar, V.: Solar energetic particles and
radio burst emission, J. Space Weather Spac., 7, A37,
https://doi.org/10.1051/swsc/2017035, 2017. a
Morosan, D. E., Gallagher, P. T., Zucca, P., O'Flannagain, A.,
Fallows, R., Reid, H., Magdalenić, J., Mann, G., Bisi, M. M.,
Kerdraon, A., Konovalenko, A. A., MacKinnon, A. L., Rucker, H. O.,
Thidé, B., Vocks, C., Alexov, A., Anderson, J., Asgekar, A.,
Avruch, I. M., Bentum, M. J., Bernardi, G., Bonafede, A.,
Breitling, F., Broderick, J. W., Brouw, W. N., Butcher, H. R.,
Ciardi, B., de Geus, E., Eislöffel, J., Falcke, H., Frieswijk,
W., Garrett, M. A., Grießmeier, J., Gunst, A. W., Hessels,
J. W. T., Hoeft, M., Karastergiou, A., Kondratiev, V. I., Kuper, G.,
van Leeuwen, J., McKay-Bukowski, D., McKean, J. P., Munk, H., Orru,
E., Paas, H., Pizzo, R., Polatidis, A. G., Scaife, A. M. M.,
Sluman, J., Tasse, C., Toribio, M. C., Vermeulen, R., and Zarka,
P.: LOFAR tied-array imaging and spectroscopy of solar S bursts, Astron. Astrophys.,
580, A65, https://doi.org/10.1051/0004-6361/201526064, 2015. a
Morosan, D. E., Kilpua, E. K. J., Carley, E. P., and Monstein, C.:
Variable emission mechanism of a Type IV radio burst, Astron. Astrophys., 623, A63,
https://doi.org/10.1051/0004-6361/201834510, 2019. a
Muhammad, B., Alberti, V., Marassi, A., Cianca, E., and Messerotti,
M.: Performance assessment of GPS receivers during the September 24, 2011
solar radio burst event, J. Space Weather Spac., 5, A32,
https://doi.org/10.1051/swsc/2015034, 2015. a
Ndacyayisenga, T., Uwamahoro, J., Sasikumar Raja, K., and Monstein, C.:
A statistical study of solar radio Type III bursts and space weather
implication, Adv. Space Res., 67, 1425–1435,
https://doi.org/10.1016/j.asr.2020.11.022, 2021. a, b
Nindos, A., Aurass, H., Klein, K. L., and Trottet, G.: Radio Emission
of Flares and Coronal Mass Ejections. Invited Review, Sol. Phys, 253, 3–41,
https://doi.org/10.1007/s11207-008-9258-9, 2008. a, b, c
Nindos, A., Alissandrakis, C. E., Hillaris, A., and Preka-Papadema, P.:
On the relationship of shock waves to flares and coronal mass ejections,
Astron. Astrophys., 531, A31, https://doi.org/10.1051/0004-6361/201116799, 2011. a
Nindos, A., Kontar, E. P., and Oberoi, D.: Solar physics with the Square
Kilometre Array, Adv. Space Res., 63, 1404–1424,
https://doi.org/10.1016/j.asr.2018.10.023, 2019. a
Pick, M. and Ji, S. C.: Type III burst sources and electron beam
injection, Sol. Phys., 107, 159–165, https://doi.org/10.1007/BF00155349, 1986. a, b, c, d
Pick, M. and Vilmer, N.: Sixty-five years of solar radioastronomy: flares,
coronal mass ejections and Sun Earth connection, Astron. Astrophys. Rev., 16, 1–153,
https://doi.org/10.1007/s00159-008-0013-x, 2008. a, b
Pohjolainen, S., van Driel-Gesztelyi, L., Culhane, J. L., Manoharan,
P. K., and Elliott, H. A.: CME Propagation Characteristics from Radio
Observations, Sol. Phys., 244, 167–188, https://doi.org/10.1007/s11207-007-9006-6,
2007. a
Reid, H. A. S. and Ratcliffe, H.: A review of solar type III radio
bursts, Res. Astron. Astrophys., 14, 773–804,
https://doi.org/10.1088/1674-4527/14/7/003, 2014. a, b
Rucker, H. O., Macher, W., Fischer, G., Oswald, T., Bougeret, J. L.,
Kaiser, M. L., and Goetz, K.: Analysis of spacecraft antenna systems:
Implications for STEREO/WAVES, Adv. Space Res., 36, 1530–1533,
https://doi.org/10.1016/j.asr.2005.07.060, 2005. a
Saint-Hilaire, P., Vilmer, N., and Kerdraon, A.: A Decade of Solar Type
III Radio Bursts Observed by the Nançay Radioheliograph 1998–2008,
Astrophys. J., 762, 60, https://doi.org/10.1088/0004-637X/762/1/60, 2013. a, b
Salas-Matamoros, C. and Klein, K.-L.: Polarisation and source structure of
solar stationary type IV radio bursts, Astron. Astrophys., 639, A102,
https://doi.org/10.1051/0004-6361/202037989, 2020. a
Salmane, H., Weber, R., Abed-Meraim, K., Klein, K.-L., and Bonnin,
X.: A method for the automated detection of solar radio bursts in dynamic
spectra, J. Space Weather Spac., 8, A43,
https://doi.org/10.1051/swsc/2018028, 2018. a
Sasikumar Raja, K. and Ramesh, R.: Low-frequency Observations of Transient
Quasi-periodic Radio Emission from the Solar Atmosphere, Astrophys. J., 775, 38,
https://doi.org/10.1088/0004-637X/775/1/38, 2013. a
Sasikumar Raja, K., Subramanian, P., Ananthakrishnan, S., and Monstein,
C.: CALLISTO Spectrometer at IISER-Pune, arXiv e-prints, arXiv:1801.03547,
2018. a
Shanmugaraju, A., Bendict Lawrance, M., Moon, Y. J., Lee, J.-O., and
Suresh, K.: Heights of Coronal Mass Ejections and Shocks Inferred from
Metric and DH Type II Radio Bursts, Sol. Phys, 292, 136,
https://doi.org/10.1007/s11207-017-1155-7, 2017. a
SunPy Community, Barnes, W. T., Bobra, M. G., Christe, S. D., Freij,
N., Hayes, L. A., Ireland, J., Mumford, S., Perez-Suarez, D., Ryan,
D. F., Shih, A. Y., Chanda, P., Glogowski, K., Hewett, R., Hughitt,
V. K., Hill, A., Hiware, K., Inglis, A., Kirk, M. S. F., Konge, S.,
Mason, J. P., Maloney, S. A., Murray, S. A., Panda, A., Park, J.,
Pereira, T. M. D., Reardon, K., Savage, S., Sipőcz, B. M.,
Stansby, D., Jain, Y., Taylor, G., Yadav, T., Rajul, and Dang,
T. K.: The SunPy Project: Open Source Development and Status of the Version
1.0 Core Package, Astrophys. J., 890, 68, https://doi.org/10.3847/1538-4357/ab4f7a, 2020. a
Suzuki, S. and Dulk, G.: Solar Radiophysics, Cambridge, Cambridge University
Press, 289–295, 1985. a
Umuhire, A., Uwamahoro, J., Sasikumar Raja, K., Kumari, A., and Monstein, C.:
Trends and characteristics of high-frequency type II bursts detected by
CALLISTO spectrometers, Adv. Space Res., 68, 3464–3477,
https://doi.org/10.1016/j.asr.2021.06.029, 2021. a, b
Vourlidas, A., Carley, E. P., and Vilmer, N.: Radio Observations of Coronal
Mass Ejections: Space Weather Aspects, Front. Astron. Space
Sci., 7, 43, https://doi.org/10.3389/fspas.2020.00043, 2020. a
Vršnak, B.: Solar flares and coronal shock waves, J. Geophys. Res,
106, 25291–25300, https://doi.org/10.1029/2000JA004009, 2001. a
Vršnak, B. and Cliver, E. W.: Origin of Coronal Shock Waves. Invited
Review, Sol. Phys, 253, 215–235, https://doi.org/10.1007/s11207-008-9241-5, 2008. a
Vršnak, B., Aurass, H., Magdalenić, J., and Gopalswamy, N.:
Band-splitting of coronal and interplanetary type II bursts. I. Basic
properties, Astron. Astrophys., 377, 321–329, https://doi.org/10.1051/0004-6361:20011067, 2001. a
Vršnak, B., Magdalenić, J., Aurass, H., and Mann, G.:
Band-splitting of coronal and interplanetary type II bursts, II. Coronal
magnetic field and Alfvén velocity, Astron. Astrophys., 396, 673–682,
https://doi.org/10.1051/0004-6361:20021413, 2002. a
Vršnak, B., Magdalenić, J., and Zlobec, P.: Band-splitting of
coronal and interplanetary type II bursts, III. Physical conditions in the
upper corona and interplanetary space, Astron. Astrophys., 413, 753–763,
https://doi.org/10.1051/0004-6361:20034060, 2004. a
Warmuth, A. and Mann, G.: The Application of Radio Diagnostics to the
Study of the Solar Drivers of Space Weather, Space Weather, 656, 49–68,
https://doi.org/10.1007/978-3-540-31534-6_3, 2004. a, b
Warmuth, A., Vršnak, B., Aurass, H., and Hanslmeier, A.:
Evolution of Two EIT/Hα Moreton Waves, Astrophys. J., 560,
L105–L109, https://doi.org/10.1086/324055, 2001. a
Weiss, A. A.: The Type IV Solar Radio Burst at Metre Wavelengths,
Austr. J. Phys., 16, 526, https://doi.org/10.1071/PH630526, 1963. a
White, S.: Solar Radio Bursts and Space Weather, Asian J. Phys., 16, 2007. a
Wild, J. P.: Observations of the Spectrum of High-Intensity Solar Radiation
at Metre Wavelengths, III. Isolated Bursts, Austr. J. Sci.
Res. A, 3, 541, 1950. a
Zheleznyakov, V. V.: Radio emission of the sun and planets, Int. Ser. Monogr. Natural Philos., 25, 150–712, 1970. a
Zucca, P., Carley, E. P., McCauley, J., Gallagher, P. T., Monstein,
C., and McAteer, R. T. J.: Observations of Low Frequency Solar Radio
Bursts from the Rosse Solar-Terrestrial Observatory, Sol. Phys., 280,
591–602, https://doi.org/10.1007/s11207-012-9992-x, 2012. a
Short summary
This paper summarises the results obtained by analysing the solar radio bursts detected by a single spectrogram installed at the University of Rwanda through the collaboration and the initiation of the space weather initiative. We aimed to show that data gaps in the African continent can be tracked by the deployment of cheap spectrograms, but their regular maintenance matters. In addition, the results show that the observation at a single station is a clue to studying space weather hazards.
This paper summarises the results obtained by analysing the solar radio bursts detected by a...