Articles | Volume 38, issue 3
https://doi.org/10.5194/angeo-38-603-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/angeo-38-603-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A quasi-experimental coastal region eddy diffusivity applied in the APUGRID model
Silvana Maldaner
Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Brazil
Michel Stefanello
Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Brazil
Luis Gustavo N. Martins
Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Brazil
Gervásio Annes Degrazia
CORRESPONDING AUTHOR
Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Brazil
Umberto Rizza
Institute of Atmospheric Sciences and Climate – National Research Council, Lecce, Italy
Débora Regina Roberti
Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Brazil
Franciano S. Puhales
Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Brazil
Otávio C. Acevedo
Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Brazil
Related authors
No articles found.
P. S. Käfer, N. S. Rocha, L. R. Diaz, E. A. Kaiser, S. T. L. Costa, G. Hallal, G. Veeck, D. Roberti, and S. B. A. Rolim
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 471–476, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-471-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-471-2020, 2020
N. S. Rocha, P. S. Käfer, D. Skokovic, G. Veeck, L. R. Diaz, E. Kaiser, C. M. Carvalho, B. K. Veettil, S. T. L. Costa, R. C. Cruz, D. Robérti, and S. B. A. Rolim
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 477–482, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-477-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-477-2020, 2020
N. S. Rocha, P. S. Käfer, D. Skokovic, G. Veeck, L. R. Diaz, E. Kaiser, C. M. Carvalho, B. K. Veettil, S. T. L. Costa, R. C. Cruz, D. Robérti, and S. B. A. Rolim
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 67–72, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-67-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-67-2020, 2020
Santiago Botía, Christoph Gerbig, Julia Marshall, Jost V. Lavric, David Walter, Christopher Pöhlker, Bruna Holanda, Gilberto Fisch, Alessandro Carioca de Araújo, Marta O. Sá, Paulo R. Teixeira, Angélica F. Resende, Cleo Q. Dias-Junior, Hella van Asperen, Pablo S. Oliveira, Michel Stefanello, and Otávio C. Acevedo
Atmos. Chem. Phys., 20, 6583–6606, https://doi.org/10.5194/acp-20-6583-2020, https://doi.org/10.5194/acp-20-6583-2020, 2020
Short summary
Short summary
A long record of atmospheric methane concentrations in central Amazonia was analyzed. We describe events in which concentrations at 79 m are higher than at 4 m. These events are more frequent during the nighttime of dry season, but we found no association with fire signals. Instead, we suggest that a combination of nighttime transport and a nearby source could explain such events. Our research gives insights into how methane is transported in the complex nocturnal atmosphere in Amazonia.
Maurício I. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Ernani L. Nascimento, Antonio O. Manzi, Pablo E. S. Oliveira, Daiane V. Brondani, Anywhere Tsokankunku, and Meinrat O. Andreae
Atmos. Chem. Phys., 20, 15–27, https://doi.org/10.5194/acp-20-15-2020, https://doi.org/10.5194/acp-20-15-2020, 2020
Short summary
Short summary
In this study, data collected during four deep convection events at the 80 m tower from the Amazon Tall Tower Observatory are analyzed. It provides a unique view on how such events affect the local boundary layer and how it recovers after their passage. Quantities analyzed include mean wind speed, virtual potential temperature, turbulent kinetic energy, sensible, and latent heat fluxes. A conceptual model for boundary layer structure along the passage of deep convection events is proposed.
Ralph Dlugi, Martina Berger, Chinmay Mallik, Anywhere Tsokankunku, Michael Zelger, Otávio C. Acevedo, Efstratios Bourtsoukidis, Andreas Hofzumahaus, Jürgen Kesselmeier, Gerhard Kramm, Daniel Marno, Monica Martinez, Anke C. Nölscher, Huug Ouwersloot, Eva Y. Pfannerstill, Franz Rohrer, Sebastian Tauer, Jonathan Williams, Ana-Maria Yáñez-Serrano, Meinrat O. Andreae, Hartwig Harder, and Matthias Sörgel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1325, https://doi.org/10.5194/acp-2018-1325, 2019
Publication in ACP not foreseen
Short summary
Short summary
Incomplete mixing (segregation) results in reduced chemical reaction rates compared to those expected from mean values and rate constants. Segregation has been suggested to cause discrepancies between modelled and measured OH radical concentrations. In this work, we summarize the intensities of segregation for the reaction of OH and isoprene for different field and modelling studies and compare those to our results from measurements in a pristine environment.
Pablo E. S. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Anywhere Tsokankunku, Stefan Wolff, Alessandro C. Araújo, Rodrigo A. F. Souza, Marta O. Sá, Antônio O. Manzi, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 3083–3099, https://doi.org/10.5194/acp-18-3083-2018, https://doi.org/10.5194/acp-18-3083-2018, 2018
Short summary
Short summary
Carbon dioxide and latent heat fluxes within the canopy are dominated by low-frequency (nonturbulent) processes. There is a striking contrast between fully turbulent and intermittent nights, such that turbulent processes dominate the total nighttime exchange during the former, while nonturbulent processes are more relevant in the latter. In very stable nights, during which intermittent exchange prevails, the stable boundary layer may be shallower than the highest observational level at 80 m.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Turbulence
On the short-term variability of turbulence and temperature in the winter mesosphere
Gerald A. Lehmacher, Miguel F. Larsen, Richard L. Collins, Aroh Barjatya, and Boris Strelnikov
Ann. Geophys., 36, 1099–1116, https://doi.org/10.5194/angeo-36-1099-2018, https://doi.org/10.5194/angeo-36-1099-2018, 2018
Short summary
Short summary
We used sounding rockets to obtain four high-resolution temperature profiles in the mesosphere over a limited area. We found consistent deep isothermal and adiabatic layers, but variable and finely structured turbulence preferentially in the lower stable mesosphere. Accompanying tracer releases showed horizontal winds in the lower thermosphere with extreme shears and 200 m s−1 winds under moderately disturbed geomagnetic conditions, and convection-like structures just below the mesopause.
Cited articles
Batchelor, G. K.: Diffusion in a field of homogeneous turbulence. I. Eulerian
analysis, Aust. J. Chem., 2, 437–450,
https://doi.org/10.1071/CH9490437, 1949. a
Berkowicz, R., Olesen, H., and Torp, U.: The Danish Gaussian air pollution
model (OML): Description, test and sensitivity analysis in view of regulatory
applications, in: Air Pollution Modeling and Its Application V, 453–481,
Springer, Boston, USA, 1986. a
Degrazia, G. and Anfossi, D.: Estimation of the Kolmogorov constant C0 from
classical statistical diffusion theory, Atmos. Environ., 32,
3611–3614, https://doi.org/10.1016/S1352-2310(98)00038-7,
1998. a
Degrazia, G., Anfossi, D., Carvalho, J., Mangia, C., Tirabassi, T., and Velho,
H. C.: Turbulence parameterisation for PBL dispersion models in all stability
conditions, Atmos. Environ., 34, 3575–3583,
https://doi.org/10.1016/S1352-2310(00)00116-3,
2000. a
Degrazia, G. A., Moreira, D. M., and Vilhena, M. T.: Derivation of an eddy
diffusivity depending on source distance for vertically inhomogeneous
turbulence in a convective boundary layer, J. Appl. Meteorol.,
40, 1233–1240,
https://doi.org/10.1175/1520-0450(2001)040<1233:DOAEDD>2.0.CO;2,
2001. a
Durand, P., Druilhet, A., and Briere, S.: A sea-land transition observed during
the COAST experiment, J. Atmos. Sci., 46, 96–116,
https://doi.org/10.1175/1520-0469(1989)046<0096:ASLTOD>2.0.CO;2,
1989. a
Garratt, J. R.: The Atmospheric Boundary Layer, Univ. Press, New York, USA, 1992. a
Gryning, S.-E. and Lyck, E.: Atmospheric dispersion from elevated sources in an
urban area: comparison between tracer experiments and model calculations,
J. Clim. Appl. Meteorol., 23, 651–660, 1984. a
Hanna, S. R.: Lagrangian and Eulerian time-scale relations in the daytime
boundary layer, J. Appl. Meteorol., 20, 242–249, 1981. a
Hanna, S. R., Briggs, G. A., Hosker Jr., R. P.: Handbook on atmospheric diffusion,
National Oceanic and Atmospheric Administration, Oak Ridge, TN
(USA), Atmospheric Turbulence and Diffusion Lab., 1982. a
Hara, T., Ohya, Y., Uchida, T., and Ohba, R.: Wind-tunnel and numerical
simulations of the coastal thermal internal boundary layer, Bound.-Lay. Meteorol., 130, 365–381, https://doi.org/10.1007/s10546-008-9343-5,
2009. a
Hinze, J.: Turbulence, Vol. 218, McGraw-Hill, New York, 1975. a
Kaimal, J. C., Wyngaard, J., Izumi, Y., and Coté, O.: Spectral
characteristics of surface-layer turbulence, Q. J. Roy.
Meteor. Soc., 98, 563–589,
https://doi.org/10.1002/qj.49709841707,
1972. a
Leelőssy, Á., Molnár, F., Izsák, F., Havasi, Á., Lagzi,
I., and Mészáros, R.: Dispersion modeling of air pollutants in the
atmosphere: a review, Open Geosci., 6, 257–278, 2014. a
Long, J. and Pepper, D.: An examination of some simple numerical schemes for
calculating scalar advection, J. Appl. Meteorol., 20, 146–156,
1981. a
Mařcuk, G. I.: Metodi del calcolo numerico, Editori riuniti, Roma, 1984. a
Martins, L. G. N., Degrazia, G. A., Acevedo, O. C., Puhales, F. S.,
de Oliveira, P. E., Teichrieb, C. A., and da Silva, S. M.: Quasi-Experimental
Determination of Turbulent Dispersion Parameters for Different Stability
Conditions from a Tall Micrometeorological Tower, J. Appl.
Meteorol. Clim., 57, 1729–1745,
https://doi.org/10.1175/JAMC-D-17-0269.1,
2018. a, b, c, d, e
McRae, G. J., Goodin, W. R., and Seinfeld, J. H.: Numerical solution of the
atmospheric diffusion equation for chemically reacting flows, J.
Comput. Phys., 45, 1–42,
https://doi.org/10.1016/0021-9991(82)90101-2,
1982. a, b
Ogawa, Y. and Ohara, T.: The turbulent structure of the internal boundary layer
near the shore, Bound.-Lay. Meteorol., 31, 369–384,
https://doi.org/10.1007/BF00120836, 1985. a
Panofsky, H. A. and Dutton, J.: Atmospheric Turbulence: Models and Methods for
Engineering Applications, John Wiley & Sons, New York, 1984. a
Pasquill, F. and Smith, F.: Atmospheric diffusion, 3rd Edn., John Wiley and Sons, New
York, USA, 1983. a
Rizza, U., Gioia, G., Lacorata, G., Mangia, C., and Marra, G. P.: Atmospheric
Dispersion with a Large-Eddy Simulation: Eulerian and Lagrangian Perspectives,
in: Air Pollution and turbulence modelling and aplications, edited by:
Moreira, D. and Vilhena, M., 237–268, CRC Press, Boca Raton, USA, 2010. a, b
Shao, Y., Hacker, J. M., and Schwerdtfeger, P.: The structure of turbulence in
a coastal atmospheric boundary layer, Q. J. Roy.
Meteor. Soc., 117, 1299–1324,
https://doi.org/10.1002/qj.49711750209,
1991. a
Smedman, A.-S. and Hoegstroem, U.: Turbulent characteristics of a shallow
convective internal boundary layer, Bound.-Lay. Meteorol., 25, 271–287,
1983. a
Tirabassi, T.: Mathematical Air Pollution Models: Eulerian Modelss, in: Air
pollution and turbulence: modeling and applications, edited by: Moreira, D. and Vilhena, M., 131–156, CRC Press, Boca Raton, USA, 2009. a
Zannetti, P.: Air pollution modeling: theories, computational methods and
available software, Springer Science & Business Media, California, USA, 2013. a
Short summary
In this paper, quasi-empirical convective eddy diffusivity parameterizations for a coastal site are obtained. In the derivation we used Taylor's theory of statistical diffusion and sonic anemometer observations collected at 11 levels on a 140 m high tower in a convective planetary boundary layer. The test of the derived coefficients was solved by solving the equation of diffusion–advection by the fractional step/locally one-dimensional (LOD) methods.
In this paper, quasi-empirical convective eddy diffusivity parameterizations for a coastal site...
Special issue