Articles | Volume 36, issue 3
Ann. Geophys., 36, 761–779, 2018

Special issue: Dynamics and interaction of processes in the Earth and its...

Ann. Geophys., 36, 761–779, 2018
Regular paper
18 May 2018
Regular paper | 18 May 2018

Comparison of accelerometer data calibration methods used in thermospheric neutral density estimation

Kristin Vielberg et al.

Related authors

RECOG RL01: correcting GRACE total water storage estimates for global lakes/reservoirs and earthquakes
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244,,, 2021
Short summary
L. Drees, J. Kusche, and R. Roscher
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 813–820,,, 2020
Global-scale drought risk assessment for agricultural systems
Isabel Meza, Stefan Siebert, Petra Döll, Jürgen Kusche, Claudia Herbert, Ehsan Eyshi Rezaei, Hamideh Nouri, Helena Gerdener, Eklavyya Popat, Janna Frischen, Gustavo Naumann, Jürgen V. Vogt, Yvonne Walz, Zita Sebesvari, and Michael Hagenlocher
Nat. Hazards Earth Syst. Sci., 20, 695–712,,, 2020
Short summary
A framework for deriving drought indicators from the Gravity Recovery and Climate Experiment (GRACE)
Helena Gerdener, Olga Engels, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 24, 227–248,,, 2020
Short summary
Niger discharge from radar altimetry: bridging gaps between gauge and altimetry time series
Stefan Schröder, Anne Springer, Jürgen Kusche, Bernd Uebbing, Luciana Fenoglio-Marc, Bernd Diekkrüger, and Thomas Poméon
Hydrol. Earth Syst. Sci., 23, 4113–4128,,, 2019
Short summary
Short summary
To predict the satellite's motion or its re-entry, the density surrounding the satellite needs to be known as precisely as possible. Usually empirical models are used to estimate the neutral density of the thermosphere, which is the region of the neutrally charged atmosphere. Here, based on calibrated accelerations measured by instruments on board satellites, we compute daily global maps to correct modeled densities. During times of high solar activity, corrections of up to 28 % are necessary.