Articles | Volume 36, issue 5
https://doi.org/10.5194/angeo-36-1335-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-1335-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Statistical study of ULF waves in the magnetotail by THEMIS observations
Shuai Zhang
Shandong Provincial Key Laboratory of Optical Astronomy and
Solar-Terrestrial Environment, School of Space Science and Physics, Shandong
University, Weihai, 264209, China
State Key Laboratory of Space Weather, Chinese Academy of Sciences,
Beijing 100190, China
Anmin Tian
CORRESPONDING AUTHOR
Shandong Provincial Key Laboratory of Optical Astronomy and
Solar-Terrestrial Environment, School of Space Science and Physics, Shandong
University, Weihai, 264209, China
Quanqi Shi
Shandong Provincial Key Laboratory of Optical Astronomy and
Solar-Terrestrial Environment, School of Space Science and Physics, Shandong
University, Weihai, 264209, China
Hanlin Li
Shandong Provincial Key Laboratory of Optical Astronomy and
Solar-Terrestrial Environment, School of Space Science and Physics, Shandong
University, Weihai, 264209, China
Alexander W. Degeling
Shandong Provincial Key Laboratory of Optical Astronomy and
Solar-Terrestrial Environment, School of Space Science and Physics, Shandong
University, Weihai, 264209, China
I. Jonathan Rae
University College London, Mullard Space Science Laboratory, Space and
Climate Physics, Dorking, UK
Colin Forsyth
University College London, Mullard Space Science Laboratory, Space and
Climate Physics, Dorking, UK
Mengmeng Wang
Shandong Provincial Key Laboratory of Optical Astronomy and
Solar-Terrestrial Environment, School of Space Science and Physics, Shandong
University, Weihai, 264209, China
Xiaochen Shen
Shandong Provincial Key Laboratory of Optical Astronomy and
Solar-Terrestrial Environment, School of Space Science and Physics, Shandong
University, Weihai, 264209, China
Weijie Sun
Department of Climate and Space Sciences and Engineering, University
of Michigan, Ann Arbor, USA
Shichen Bai
Shandong Provincial Key Laboratory of Optical Astronomy and
Solar-Terrestrial Environment, School of Space Science and Physics, Shandong
University, Weihai, 264209, China
Ruilong Guo
Institute of Geology and Geophysics Chinese Academy of Sciences,
Beijing 100029, China
Huizi Wang
Shandong Provincial Key Laboratory of Optical Astronomy and
Solar-Terrestrial Environment, School of Space Science and Physics, Shandong
University, Weihai, 264209, China
Andrew Fazakerley
University College London, Mullard Space Science Laboratory, Space and
Climate Physics, Dorking, UK
Suiyan Fu
School of Earth and Space Sciences, Peking University, Beijing 100871,
China
Zuyin Pu
School of Earth and Space Sciences, Peking University, Beijing 100871,
China
Related authors
No articles found.
Motoharu Nowada, Adrian Grocott, and Quan-Qi Shi
Ann. Geophys., 40, 299–314, https://doi.org/10.5194/angeo-40-299-2022, https://doi.org/10.5194/angeo-40-299-2022, 2022
Short summary
Short summary
We report that the ionospheric plasma flow patterns associated with the J-shaped transpolar arc (a type of nightside distorted TPA), detected by the SuperDARN radar, reveal the formation process of the nightside distortion of a TPA. Equatorward flows at the TPA growth point were observed flowing out of the polar cap and then turning toward the pre-midnight main auroral oval along the TPA nightside distortion. These ionospheric flow patterns would cause the distortion at the TPA nightside end.
Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, and Yoshifumi Saito
Ann. Geophys., 40, 217–229, https://doi.org/10.5194/angeo-40-217-2022, https://doi.org/10.5194/angeo-40-217-2022, 2022
Short summary
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
Z. H. Yao, J. Liu, C. J. Owen, C. Forsyth, I. J. Rae, Z. Y. Pu, H. S. Fu, X.-Z. Zhou, Q. Q. Shi, A. M. Du, R. L. Guo, and X. N. Chu
Ann. Geophys., 33, 1301–1309, https://doi.org/10.5194/angeo-33-1301-2015, https://doi.org/10.5194/angeo-33-1301-2015, 2015
Short summary
Short summary
We use THEMIS large data set of dipolarization front events to build a 2-D pressure distribution in XZ plane, and thus derive the current system around the dipolarization front. Our results show that a banana current loop is formed around the dipolarization front. This current is also suggested to be the reason for the magnetic dip observed ahead of the dipolarization front. In addition, the current density is too small to contribute a substorm current wedge.
E. Lee, G. K. Parks, S. Y. Fu, M. Fillingim, Y. B. Cui, J. Hong, I. Dandouras, and H. Rème
Ann. Geophys., 33, 1263–1269, https://doi.org/10.5194/angeo-33-1263-2015, https://doi.org/10.5194/angeo-33-1263-2015, 2015
D. Pokhotelov, I. J. Rae, K. R. Murphy, and I. R. Mann
Ann. Geophys., 33, 697–701, https://doi.org/10.5194/angeo-33-697-2015, https://doi.org/10.5194/angeo-33-697-2015, 2015
Short summary
Short summary
Solar wind impacts the Earth’s magnetic cavity driving waves in the magnetosphere. The waves in the range of few mHz are important for the dynamics of energetic particles trapped inside the magnetosphere. The average solar wind parameters are known to control of magnetospheric wave power. Here the variability of solar wind parameters, rather than average properties, is analysed. It is shown that the magnetospheric wave power is most sensitive to variations in the interplanetary magnetic field.
A. Varsani, C. J. Owen, A. N. Fazakerley, C. Forsyth, A. P. Walsh, M. André, I. Dandouras, and C. M. Carr
Ann. Geophys., 32, 1093–1117, https://doi.org/10.5194/angeo-32-1093-2014, https://doi.org/10.5194/angeo-32-1093-2014, 2014
A. P. Walsh, S. Haaland, C. Forsyth, A. M. Keesee, J. Kissinger, K. Li, A. Runov, J. Soucek, B. M. Walsh, S. Wing, and M. G. G. T. Taylor
Ann. Geophys., 32, 705–737, https://doi.org/10.5194/angeo-32-705-2014, https://doi.org/10.5194/angeo-32-705-2014, 2014
M. Volwerk, N. André, C. S. Arridge, C. M. Jackman, X. Jia, S. E. Milan, A. Radioti, M. F. Vogt, A. P. Walsh, R. Nakamura, A. Masters, and C. Forsyth
Ann. Geophys., 31, 817–833, https://doi.org/10.5194/angeo-31-817-2013, https://doi.org/10.5194/angeo-31-817-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: MHD waves and instabilities
Even moderate geomagnetic pulsations can cause fluctuations of foF2 frequency of the auroral ionosphere
Wavevector spectral signature of decay instability in space plasmas
The mirror mode: a “superconducting” space plasma analogue
Nadezda Yagova, Alexander Kozlovsky, Evgeny Fedorov, and Olga Kozyreva
Ann. Geophys., 39, 549–562, https://doi.org/10.5194/angeo-39-549-2021, https://doi.org/10.5194/angeo-39-549-2021, 2021
Short summary
Short summary
We present a study of ultralow-frequency waves in the ionosphere and on the ground. These waves are very slow (their periods are about several minutes). They are registered on the ground as geomagnetic pulsations. No simple dependence exists between geomagnetic and ionospheric pulsations. Here we study not only selected pulsations with very high amplitudes but also usual pulsations and try to answer the question, which pulsation parameters are favorable for modulation of the ionosphere?
Horia Comişel, Yasuhito Narita, and Uwe Motschmann
Ann. Geophys., 39, 165–170, https://doi.org/10.5194/angeo-39-165-2021, https://doi.org/10.5194/angeo-39-165-2021, 2021
Short summary
Short summary
Identification of a large-amplitude Alfvén wave decaying into a pair of
ion-acoustic and daughter Alfvén waves is one of the major goals in the
observational studies of space plasma nonlinearity.
Growth-rate maps
may serve as a useful tool for predictions of the wavevector spectrum of density
or magnetic field fluctuations in various scenarios for the
wave–wave coupling processes developing at different stages in
space plasma turbulence.
Rudolf A. Treumann and Wolfgang Baumjohann
Ann. Geophys., 36, 1015–1026, https://doi.org/10.5194/angeo-36-1015-2018, https://doi.org/10.5194/angeo-36-1015-2018, 2018
Short summary
Short summary
The physics of the magnetic mirror mode in its final state of saturation, the thermodynamic equilibrium, is re-examined to demonstrate that the mirror mode is the classical analogue of a superconducting effect in an anisotropic-pressure space plasma. Three different spatial correlation scales are identified which control the behaviour of its evolution into large-amplitude chains of mirror bubbles.
Cited articles
Allan, W. and Poulter, E. M.: Ulf waves-their relationship to the structure
of the earth's magnetosphere, Rep. Prog. Phys., 55, 533–598,
https://doi.org/10.1088/0034-4885/55/5/001, 1992.
Allan, W., White, S. P., and Poulter, E. M.: Impulse-excited hydromagnetic
cavity and field-line resonances in the magnetosphere, Planet. Space Sci.,
34, 371–385, https://doi.org/10.1016/0032-0633(86)90144-3, 1986.
Angelopoulos, V.: The THEMIS mission, Space Sci. Rev., 141, 5–34,
https://doi.org/10.1007/s11214-008-9336-1, 2008.
Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W.,
Constantinescu, D., Fornacon, K. H., Georgescu, E.; Harvey, P., Hillenmaier,
O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke,
F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and Wiedemann,
M.: The Themis fluxgate magnetometer, Space Sci. Rev., 141, 235–264,
https://doi.org/10.1007/s11214-008-9365-9, 2008.
Baumjohann, W. and Glassmeier, K. H.: The transient response mechanism and
Pi2 pulsations at substorm onset: Review and outlook, Planet. Space Sci.,
32, 1361–1370, https://doi.org/10.1016/0032-0633(84)90079-5, 1984.
Chen, L. and Hasegawa, A.: On magnetospheric hydromagnetic waves excited by
energetic ring current particles, J. Geophys. Res., 93, 8763–8767, 1988.
Claudepierre S. G., Elkington, S. R., and Wiltberger, M.: Solar wind driving
of magnetospheric ULF waves: Pulsations driven by velocity shear at the
magnetopause, J. Geophys. Res., 113, A05218, https://doi.org/10.1029/2007JA012890,
2008.
Degeling, A. W., Rankin, R., and Zong, Q.-G.: Modeling radiation belt
electron acceleration by ULF fast mode waves, launched by solar wind dynamic
pressure fluctuations, J. Geophys. Res.-Space, 119, 8916–8928,
https://doi.org/10.1002/2013JA019672, 2014.
Forsyth, C., Rae, I. J., Coxon, J. C., Freeman, M. P., Jackman, C. M.,
Gjerloev, J., and Fazakerley, A. N.: A new technique for determining Substorm
Onsets and Phases from Indices of the Electrojet (SOPHIE), J. Geophys.
Res.-Space, 120, 10592–10606, https://doi.org/10.1002/2015JA021343, 2015.
Gibbons, J. D., and Chakraborti, S.: Nonparametric Statistical Inference, 5th
Edn., Boca Raton, FL: Chapman & Hall/CRC Press, Taylor & Francis Group,
2011.
GSFC (Goddard Space Flight Center): Space Physics Data Facility (SPDF),
available at: https://spdf.sci.gsfc.nasa.gov/, last access: October
2018.
Hudson, M. K., Denton, R. E., Lessard, M. R., Miftakhova, E. G., and
Anderson, R. R.: A study of Pc-5 ULF oscillations, Ann. Geophys., 22,
289–302, https://doi.org/10.5194/angeo-22-289-2004, 2004.
Keiling, A.: Alfvén Waves and Their Roles in the Dynamics of the Earth's
Magnetotail: A Review, Space Sci. Rev., 142, 73–156, 2009.
Kepko, L. and Spence, H. E.: Observations of discrete, global magnetospheric
oscillations directly driven by solar wind density variations, J. Geophys.
Res., 108, A61257, https://doi.org/10.1029/2002JA009676, 2003.
Kepko, L., Spence, H. E., and Singer, H. E.: ULF waves in the solar wind as
direct drivers of magnetospheric pulsations, J. Geophys. Res., 29,
39-1–39-4, 2002.
Kokubun, S.: ULF waves in the outer magnetosphere: Geotail observation 1
transverse waves, Earth Planet. Space, 65, 411–433,
https://doi.org/10.5047/eps.2012.12.013, 2013.
Lee, D. and Lysak, R. L.: Magnetospheric ulf wave coupling in the dipole
model: the impulsive excitation, J. Geophys. Res.-Space, 94, 17097–17103,
1989.
Lessard, M. R., Hudson, M. K., and Luhr, H.: A statistical study of Pc3–Pc5
magnetic pulsations observed by the AMPTE/Ion Release Module satellite, J.
Geophys. Res., 104, 4523, https://doi.org/10.1029/ 1998JA900116, 1999.
Liu, W., Sarris, T. E., Li, X., Elkington, S. R., Ergun, R., Angelopoulos,
V., Bonnell, J., and Glassmeier, K. H.: Electric and magnetic field
observations of Pc4 and Pc5 pulsations in the inner magnetosphere: A
statistical study, J. Geophys. Res., 114, A12206, https://doi.org/10.1029/2009JA014243,
2009.
Lui, A. T. Y. and Cheng, C. Z.: Resonance frequency of stretched magnetic
field lines based on a self-consistent equilibrium magnetosphere model, J.
Geophys. Res., 106, 25793–25802, https://doi.org/10.1029/2001JA000113, 2001.
Mcfadden, J. P., Carlson, C. W., Larson, D., Bonnell, J., Mozer, F.,
Angelopoulos, V., Glassmeier, K. H., and Auster, U.: THEMIS ESA first science
results and performance issues, Space Sci. Rev., 141, 477–508,
https://doi.org/10.1007/s11214-008-9433-1, 2008.
Miura, A.: Kelvin-Helmholz Instability at the Magnetospheric Boundary:
Dependence on the Magnetosheath Sonic Mach Number, J. Geophys. Res., 97,
10655–10675, 1992.
NASA (National Aeronautics and Space Administration): THEMIS, available at:
http://themis.ssl.berkeley.edu, last access: October 2018.
Nykyri, K.: Impact of MHD shock physics on magnetosheath asymmetry and
Kelvin-Helmholtz instability, J. Geophys. Res.-Space, 118, 5068–5081,
https://doi.org/10.1002/jgra.50499, 2013.
Olson, J. V.: Pi2 pulsations and substorm onsets: A review, J. Geophys. Res.,
104, 17499–17520, https://doi.org/10.1029/1999JA900086, 1999.
Rae, I. J., Murphy, K. R., Watt, C. E. J., Rostoker, G., Rankin, R., Mann, I.
R., Hodgson, C. R., Frey, H. U., Degeling, A. W., and Forsyth, C.: Field line
resonances as a trigger and a tracer for substorm onset, J. Geophys.
Res.-Space, 119, 5343–5363, https://doi.org/10.1002/2013JA018889, 2014.
Rankin, R., Fenrich, F., and Tikhonchuk, V. T.: Shear Alfvén waves on
stretched magnetic field lines near midnight in Earth's magnetosphere,
Geophys. Res. Lett., 27, 3265–3268, 2000.
Rostoker, G., Spadinger, I., and Samson, J. C.: Local time variation in the
response of Pc5 pulsations in the morning sector to substorm expansive phase
onsets near midnight, J. Geophys. Res., 89, 6749–6757,
https://doi.org/10.1029/JA089iA08p06749, 1984.
Saito, T.: Long-period irregular magnetic pulsation, Pi3, Space Sci. Rev.,
21, 427–467, https://doi.org/10.1007/BF00173068, 1978.
Samson, J. C. and Rostoker, G.: Response of dayside Pc5 pulsations to
substorm activity in the nighttime magnetosphere, J. Geophys. Res., 86,
733–752, https://doi.org/10.1029/JA086iA02p00733, 1981.
Shen, X. C., Zong, Q.-G., Shi, Q. Q., Tian, A. M., Sun, W. J., Wang, Y. F.,
Zhou, X. Z., Fu, S. Y., Hartinger, M. D., and Angelopoulos, V.:
Magnetospheric ULF waves with increasing amplitude related to solar wind
dynamic pressure changes: The Time History of Events and Macroscale
Interactions during Substorms (THEMIS) observations, J. Geophys. Res., 120,
7179–7190, https://doi.org/10.1002/2014JA020913, 2015.
Shen, X.C., Shi, Q. Q., Zong, Q.-G., Tian, A. M., Nowada, M., Sun, W. J.,
Zhao, H. Y., Hudson, M. K., Wang, H. Z., Fu, S. Y., and Pu, Z. Y.: Dayside
magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure
negative impulse, J. Geophys. Res.-Space, 122, https://doi.org/10.1002/2016JA023351,
2017.
Shi, Q. Q., Hartinger, M. D., Angelopoulos, V., Zong, Q.-G., Zhou, X.-Z.,
Zhou, X.-Y., Kellerman, A., Tian, A. M., Weygand, J., Fu, S. Y., Pu, Z. Y.,
Raeder, J., Ge, Y. S., Wang, Y. F., Zhang, H., and Yao, Z. H.: THEMIS
observations of ULF wave excitation in the nightside plasma sheet during
sudden impulse events, J. Geophys. Res., 118, 284–298,
https://doi.org/10.1029/2012JA017984, 2013.
Shi, Q. Q., Hartinger, M. D., Angelopoulos, V., Fu, S. Y., Zong, Q.-G., Tian,
A. M., Weygand, J. M., Raeder, J., Pu, Z. Y., Zhou, X. Z., Dunlop, M. W.,
Liu, W. L., Zhang, H., Yao, Z. H., and Shen, X. C.: Solar wind pressure
pulse-driven magnetospheric vortices and their global consequences, J.
Geophys. Res., 119, 4274–4280, https://doi.org/10.1002/2013JA019551, 2014.
Shue, J.-H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K.,
Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R.,
and Kawano, H.: Magnetopause location under extreme solar wind conditions,
J. Geophys. Res., 103, 17691–17700, https://doi.org/10.1029/98JA01103, 1998.
Singer, H. J., Hughes, W. J., and Russell, C. T.: Standing hydromagnetic
waves observed by ISEE 1 and 2: Radial extent and harmonic, J. Geophys.
Res., 87, 3519–3529, 1982.
Southwood, D. J., Dungey, J. W., and Eherington, R. L.: Bounce resonant
interaction between pulsations and trapped particles, Planet Space Sci., 17,
349–361, 1969.
Sun, W. J., Slavin, J. A., Fu, S., Raines, J. M., Sundberg, T., and Zong,
Q.-G., Jia, X. Z., Shi, Q. Q., Shen, X. C., Poh, G. K., Pu, Z. Y., and
Zurbuchen, T. H.: Messenger observations of alfvénic and compressional
waves during mercury's substorms, Geophys. Res. Lett., 42, 6189–6198, 2015.
Takahashi, K. and McPherron, R. L.: Harmonic structure of Pc3–4 pulsations,
J. Geophys. Res., 87, 1504, https://doi.org/10.1029/JA087iA03p01504, 1982.
Takahashi, K. and Ukhorskiy, A. Y.: Solar wind control of Pc5 pulsation
power at geosynchronous orbit, J. Geophys. Res., 112, A11205,
https://doi.org/10.1029/2007JA012483, 2007.
Takahashi, K., Denton, R. E., Hirahara, M., Min, K., Ohtani, S., and Sanchez,
E.: Solar cycle variation of plasma mass density in the outer magnetosphere:
Magnetoseismic analysis of toroidal standing Alfvén waves detected by
Geotail, J. Geophys. Res.-Space, 119, 8338–8356, https://doi.org/10.1002/2014JA020274,
2014.
Takahashi, K., Hartinger, M. D., Angelopoulos, V., and Glassmeier, K. H.: A
statistical study of fundamental toroidal mode standing Alfvén waves
using THEMIS ion bulk velocity data, J. Geophys. Res.-Space, 120, 6474–6495,
https://doi.org/10.1002/2015JA021207, 2015.
Tian, A. M, Zong, Q.-G., Zhang, T. L., Nakamura, R., Du, A. M., Baumjohann,
W., Glassmeier, K. H., Volwerk, M., Hartinger, M., Wang, Y. F., Du, J., Yang,
B., Zhang, X. Y., and Panov, E.: Dynamics of long-period ULF waves in the
plasma sheet: Coordinated space and ground observations, J. Geophys. Res.,
117, A03211, https://doi.org/10.1029/2011JA016551, 2012.
Ukhorskiy, A. Y., Takahashi, K., Anderson, B. J., and Korth, H.: Impact of
toroidal ULF waves on the outer radiation belt electrons, J. Geophys. Res.,
110, A10202, https://doi.org/10.1029/2005JA011017, 2005.
Walker, A. D. M.: The Kelvin-Helmholtz instability in the low-latitude
boundary layer, Planet. Space Sci., 29, 1119–1133,
https://doi.org/10.1016/0032-0633(81)90011-8, 1981.
Wang, G. Q., Zhang, T. L., and Ge, Y. S.: Spatial distribution of magnetic
fluctuation power with period 40 to 600 s in the magnetosphere observed by
THEMIS, J. Geophys. Res.-Space, 120, 9281–9293, https://doi.org/10.1002/2015JA021584,
2015.
Wang, C.-P., Merkin, V. G., and Angelopoulos, V.: Mesoscale perturbations in
midtail lobe/mantle during steady northward IMF: ARTEMIS observation and MHD
simulation, J. Geophys. Res., 122, 6430–6441, https://doi.org/10.1002/2017JA024305,
2017.
Waters, C. L., Harrold, B. G., Menk, F. W., Samson, J. C., and Fraser, B. J.:
Field line resonances and waveguide modes at low latitudes: 2. A model, J.
Geophys. Res., 105, 7763–7774, https://doi.org/10.1029/1999JA900267, 2000.
Yang, B., Zong, Q.-G., Wang, Y. F., Fu, S. Y., Song, P., Fu, H. S., Korth,
A., Tian, T., and Reme, H.: Cluster observations of simultaneous resonant
interactions of ULF waves with energetic electrons and thermal ion species in
the inner magnetosphere, J. Geophys. Res., 115, A02214,
https://doi.org/10.1029/2009JA014542, 2010.
Zhang, X. Y., Zong, Q.-G., Wang, Y. F., Zhang, H., Xie, L., Fu, S. Y., Yuan,
C. J., Yue, C., Yang, B., and Pu, Z. Y.: ULF waves excited by
negative/positive solar wind dynamic pressure impulses at geosynchronous
orbit, J. Geophys. Res., 115, A10221, https://doi.org/10.1029/2009JA015016, 2010.
Zheng, Y., Lui, A. T. Y., Mann, I. R., Takahashi, K., Watermann, J., Chen,
S.-H., Rae, I. J., Mukai, T., Russell, C. T., Balogh, A., Pfaff, R. F., and
Rème, H.: Coordinated observation of field line resonance in the
mid-tail, Ann. Geophys., 24, 707–723,
https://doi.org/10.5194/angeo-24-707-2006, 2006.
Zong, Q.-G.: Ultralow frequency modulation of energetic particles in the
dayside magnetosphere, Geophys. Res. Lett, 34, 195–225, 2007.
Zong, Q.-G., Zhou, X. Z., Wang, Y. F., Li, X., Song, P., Baker, D. N., Fritz,
T. A., Daly, P. W., Dunlop, M., and Pedersen, A.: Energetic electron response
to ULF waves induced by interplanetary shocks in the outer radiation belt, J.
Geophys. Res., 114, A10204, https://doi.org/10.1029/2009JA014393, 2009.
Zong, Q.-G., Wang, Y. F., Zhang, H., Fu, S. Y., Zhang, H., Wang, C. R., Yuan,
C. J., and Vogiatzis, I.: Fast acceleration of inner magnetospheric hydrogen
and oxygen ions by shock induced ULF waves, J. Geophys. Res., 177, A11206,
https://doi.org/10.1029/2012JA018024, 2012.
Zong, Q.-G., Rankin, R., and Zhou, X. Z.: The interaction of ultralow
frequency Pc3–5 waves with charged particles in earth's magnetosphere, Rev.
Mod. Plasma Phys., 1, 10, https://doi.org/10.1007/s41614-017-0011-4, 2017.
Short summary
The features of ULF waves are statistically studied on the magnetotail stretched magnetic field lines (8 RE < R < 32 RE) by using 8 years of THEMIS data. The occurrence rates of ULF waves are higher in the post-midnight region than pre-midnight region. The frequency decreases with increasing radial distance of 8–16 RE and could be explained by much more standing waves in this region than in the region of 16–32 RE. The wave frequency is higher after the substorm onset than before it.
The features of ULF waves are statistically studied on the magnetotail stretched magnetic field...