Articles | Volume 35, issue 4
https://doi.org/10.5194/angeo-35-965-2017
https://doi.org/10.5194/angeo-35-965-2017
Regular paper
 | Highlight paper
 | 
21 Aug 2017
Regular paper | Highlight paper |  | 21 Aug 2017

The electric current approach in the solar–terrestrial relationship

Syun-Ichi Akasofu

Abstract. The sequence of phenomena consisting of solar flares, coronal mass ejections (CMEs), auroral substorms, and geomagnetic storms is mostly a manifestation of electromagnetic energy dissipation. Thus, first of all, it is natural to consider each of them in terms of a sequence of power supply (dynamo), power transmission (electric currents/circuits), and dissipation (mostly observed phenomena), i.e., as an input–output process and the electric current line approach. Secondly, extending this concept, it is attempted in this paper to consider the whole solar–terrestrial relationship in terms of electric currents. This approach enables us to follow through not only the sequence in solar flares, auroral substorms, and geomagnetic storms but also to connect all phenomena naturally as a continuous flow of magnetic energy (V[B2∕8π]) from the sun across the magnetopause. This consideration gives some insight into all the processes involved equally well compared with the magnetic field line approach, which has been adopted almost exclusively in the past.

Download
Short summary
The sequence of phenomena consisting of solar flares, coronal mass ejections (CMEs), auroral substorm, and geomagnetic storms is mostly a manifestation of electromagnetic energy dissipation. Thus, first of all, it is natural to consider each of them in terms of a sequence of power supply (dynamo), power transmission (electric currents/circuits), and dissipation (mostly observed phenomena), i.e., as an input–output process and the electric current line approach.