Articles | Volume 35, issue 2
https://doi.org/10.5194/angeo-35-203-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-35-203-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Three-dimensional data assimilation for ionospheric reference scenarios
Tatjana Gerzen
CORRESPONDING AUTHOR
German Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, Germany
Volker Wilken
German Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, Germany
David Minkwitz
German Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, Germany
Mainul M. Hoque
German Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, Germany
Stefan Schlüter
European Space Agency ESA – EGNOS Project Office, 31401 Toulouse CEDEX 4, France
Related authors
Tatjana Gerzen, David Minkwitz, Michael Schmidt, and Eren Erdogan
Ann. Geophys., 38, 1171–1189, https://doi.org/10.5194/angeo-38-1171-2020, https://doi.org/10.5194/angeo-38-1171-2020, 2020
Short summary
Short summary
We focus on reconstructing the topside ionosphere and plasmasphere and assimilating the space-based Global Navigation Satellite System slant total electron content (STEC) measurements with an ensemble Kalman filter (EnKF). We present methods for realizing the propagation step without a physical model. We investigate the capability of our estimations to reconstruct independent STEC and electron density measurements. We compare the EnKF approach with SMART+ and the 3D ionosphere model NeQuick.
David Minkwitz, Karl Gerald van den Boogaart, Tatjana Gerzen, Mainul Hoque, and Manuel Hernández-Pajares
Ann. Geophys., 34, 999–1010, https://doi.org/10.5194/angeo-34-999-2016, https://doi.org/10.5194/angeo-34-999-2016, 2016
Short summary
Short summary
We extend the kriging of the ionospheric electron density with slant total electron content (STEC) measurements based on a spatial covariance to kriging with a spatial–temporal covariance and develop a novel tomography approach by gradient-enhanced kriging assimilating STEC and F2 layer characteristics. The methods are cross-validated with independent measurements and point out the potential compensation for the often observed bias in the estimation of the F2 layer peak height.
T. Gerzen and D. Minkwitz
Ann. Geophys., 34, 97–115, https://doi.org/10.5194/angeo-34-97-2016, https://doi.org/10.5194/angeo-34-97-2016, 2016
Short summary
Short summary
The accuracy and availability of satellite-based applications like GNSS positioning and remote sensing crucially depends on the knowledge of the ionospheric electron density distribution. The 3-D reconstruction of the ionosphere is one of the major tools to provide ionospheric corrections and to study physical processes in the ionosphere. In this paper, we introduce two reconstruction methods SMART and SMART+, and compare them to well-known reconstruction techniques ART and SART.
D. Minkwitz, K. G. van den Boogaart, T. Gerzen, and M. Hoque
Ann. Geophys., 33, 1071–1079, https://doi.org/10.5194/angeo-33-1071-2015, https://doi.org/10.5194/angeo-33-1071-2015, 2015
T. Gerzen, N. Jakowski, V. Wilken, and M. M. Hoque
Ann. Geophys., 31, 1241–1249, https://doi.org/10.5194/angeo-31-1241-2013, https://doi.org/10.5194/angeo-31-1241-2013, 2013
Marc Hansen, Daniela Banyś, Mark Clilverd, David Wenzel, and M. Mainul Hoque
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2023-38, https://doi.org/10.5194/angeo-2023-38, 2024
Revised manuscript accepted for ANGEO
Short summary
Short summary
The VLF amplitude does not show a symmetrical behavior over the year, which would be expected from its dependency on the solar position. The VLF amplitude rather shows a distinctive sharp decrease around October, which is hence called the “October effect”. This study is the first to systematically investigate this October effect, which shows a clear latitudinal dependency.
Tatjana Gerzen, David Minkwitz, Michael Schmidt, and Eren Erdogan
Ann. Geophys., 38, 1171–1189, https://doi.org/10.5194/angeo-38-1171-2020, https://doi.org/10.5194/angeo-38-1171-2020, 2020
Short summary
Short summary
We focus on reconstructing the topside ionosphere and plasmasphere and assimilating the space-based Global Navigation Satellite System slant total electron content (STEC) measurements with an ensemble Kalman filter (EnKF). We present methods for realizing the propagation step without a physical model. We investigate the capability of our estimations to reconstruct independent STEC and electron density measurements. We compare the EnKF approach with SMART+ and the 3D ionosphere model NeQuick.
Yannick Béniguel, Iurii Cherniak, Alberto Garcia-Rigo, Pierrick Hamel, Manuel Hernández-Pajares, Roland Kameni, Anton Kashcheyev, Andrzej Krankowski, Michel Monnerat, Bruno Nava, Herbert Ngaya, Raül Orus-Perez, Hughes Secrétan, Damien Sérant, Stefan Schlüter, and Volker Wilken
Ann. Geophys., 35, 377–391, https://doi.org/10.5194/angeo-35-377-2017, https://doi.org/10.5194/angeo-35-377-2017, 2017
Short summary
Short summary
The work presented in this paper was done in the frame of an ESA activity. The aim of this project was to study ionosphere disturbances liable to impact navigation systems. This project has been running over several years, allowing enough data acquisition to gain sufficient knowledge of ionosphere variability. It was launched to support the European Satellite-Based Augmented System (EGNOS), also considering a possible extension of the system over Africa.
David Minkwitz, Karl Gerald van den Boogaart, Tatjana Gerzen, Mainul Hoque, and Manuel Hernández-Pajares
Ann. Geophys., 34, 999–1010, https://doi.org/10.5194/angeo-34-999-2016, https://doi.org/10.5194/angeo-34-999-2016, 2016
Short summary
Short summary
We extend the kriging of the ionospheric electron density with slant total electron content (STEC) measurements based on a spatial covariance to kriging with a spatial–temporal covariance and develop a novel tomography approach by gradient-enhanced kriging assimilating STEC and F2 layer characteristics. The methods are cross-validated with independent measurements and point out the potential compensation for the often observed bias in the estimation of the F2 layer peak height.
T. Gerzen and D. Minkwitz
Ann. Geophys., 34, 97–115, https://doi.org/10.5194/angeo-34-97-2016, https://doi.org/10.5194/angeo-34-97-2016, 2016
Short summary
Short summary
The accuracy and availability of satellite-based applications like GNSS positioning and remote sensing crucially depends on the knowledge of the ionospheric electron density distribution. The 3-D reconstruction of the ionosphere is one of the major tools to provide ionospheric corrections and to study physical processes in the ionosphere. In this paper, we introduce two reconstruction methods SMART and SMART+, and compare them to well-known reconstruction techniques ART and SART.
D. Minkwitz, K. G. van den Boogaart, T. Gerzen, and M. Hoque
Ann. Geophys., 33, 1071–1079, https://doi.org/10.5194/angeo-33-1071-2015, https://doi.org/10.5194/angeo-33-1071-2015, 2015
T. Gerzen, N. Jakowski, V. Wilken, and M. M. Hoque
Ann. Geophys., 31, 1241–1249, https://doi.org/10.5194/angeo-31-1241-2013, https://doi.org/10.5194/angeo-31-1241-2013, 2013