Articles | Volume 35, issue 1
https://doi.org/10.5194/angeo-35-11-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-35-11-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
On the response of quasi-adiabatic particles to magnetotail reconfigurations
Dominique C. Delcourt
CORRESPONDING AUTHOR
LPP, Ecole Polytechnique-CNRS-UPMC, Paris, France
Helmi V. Malova
Space Research Institute, Russian Academy of Sciences, Moscow, Russia
Lev M. Zelenyi
Space Research Institute, Russian Academy of Sciences, Moscow, Russia
Related authors
D. C. Delcourt
Ann. Geophys., 31, 1673–1679, https://doi.org/10.5194/angeo-31-1673-2013, https://doi.org/10.5194/angeo-31-1673-2013, 2013
Ari-Matti Harri, Konstantin Pichkadze, Lev Zeleny, Luis Vazquez, Walter Schmidt, Sergey Alexashkin, Oleg Korablev, Hector Guerrero, Jyri Heilimo, Mikhail Uspensky, Valery Finchenko, Vyacheslav Linkin, Ignacio Arruego, Maria Genzer, Alexander Lipatov, Jouni Polkko, Mark Paton, Hannu Savijärvi, Harri Haukka, Tero Siili, Vladimir Khovanskov, Boris Ostesko, Andrey Poroshin, Marina Diaz-Michelena, Timo Siikonen, Matti Palin, Viktor Vorontsov, Alexander Polyakov, Francisco Valero, Osku Kemppinen, Jussi Leinonen, and Pilar Romero
Geosci. Instrum. Method. Data Syst., 6, 103–124, https://doi.org/10.5194/gi-6-103-2017, https://doi.org/10.5194/gi-6-103-2017, 2017
Short summary
Short summary
Investigations of Mars – its atmosphere, surface and interior – require simultaneous, distributed in situ measurements. We have developed an innovative prototype of the Mars Network Lander (MNL), a small lander/penetrator with a 20 % payload mass fraction. MNL features an innovative Entry, Descent and Landing System to increase reliability and reduce the system mass. It is ideally suited for piggy-backing on spacecraft, for network missions and pathfinders for high-value landed missions.
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, and H. V. Malova
Ann. Geophys., 32, 1349–1360, https://doi.org/10.5194/angeo-32-1349-2014, https://doi.org/10.5194/angeo-32-1349-2014, 2014
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 32, 133–146, https://doi.org/10.5194/angeo-32-133-2014, https://doi.org/10.5194/angeo-32-133-2014, 2014
A. V. Artemyev, A. I. Neishtadt, and L. M. Zelenyi
Nonlin. Processes Geophys., 20, 899–919, https://doi.org/10.5194/npg-20-899-2013, https://doi.org/10.5194/npg-20-899-2013, 2013
D. C. Delcourt
Ann. Geophys., 31, 1673–1679, https://doi.org/10.5194/angeo-31-1673-2013, https://doi.org/10.5194/angeo-31-1673-2013, 2013
A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 31, 1109–1114, https://doi.org/10.5194/angeo-31-1109-2013, https://doi.org/10.5194/angeo-31-1109-2013, 2013
Short summary
In a magnetic field reversal, the guiding center may not be valid due to large variation of the magnetic field on the length scale of the particle gyro-radius. Although they do not execute regular helical motion and temporarily meander inside the field reversal, quasi-adiabatic particles exit this reversal with a magnetic moment nearly identical to that at entry. We show that this behavior, which is a steady-state concept, can persist during dipolarization despite the induced electric field.
In a magnetic field reversal, the guiding center may not be valid due to large variation of the...