Articles | Volume 33, issue 10
https://doi.org/10.5194/angeo-33-1301-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-33-1301-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A physical explanation for the magnetic decrease ahead of dipolarization fronts
Z. H. Yao
CORRESPONDING AUTHOR
UCL Mullard Space Science Laboratory, Dorking, RH5 6NT, UK
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095-1567, USA
C. J. Owen
UCL Mullard Space Science Laboratory, Dorking, RH5 6NT, UK
C. Forsyth
UCL Mullard Space Science Laboratory, Dorking, RH5 6NT, UK
I. J. Rae
UCL Mullard Space Science Laboratory, Dorking, RH5 6NT, UK
Z. Y. Pu
School of Earth and Space Sciences, Peking University, Beijing 100871, China
H. S. Fu
Space Science Institute, School of Astronautics, Beihang University, Beijing 100191, China
X.-Z. Zhou
School of Earth and Space Sciences, Peking University, Beijing 100871, China
Q. Q. Shi
Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University, Weihai 264209, China
A. M. Du
Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
R. L. Guo
School of Earth and Space Sciences, Peking University, Beijing 100871, China
X. N. Chu
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095-1567, USA
Viewed
Total article views: 1,818 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 26 Oct 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,062 | 681 | 75 | 1,818 | 76 | 83 |
- HTML: 1,062
- PDF: 681
- XML: 75
- Total: 1,818
- BibTeX: 76
- EndNote: 83
Cited
39 citations as recorded by crossref.
- Frozen-in condition for ions and electrons: implication on magnetic flux transport by dipolarizing flux bundles A. Lui 10.1186/s40562-018-0104-0
- Dipolarization front and current disruption A. Lui 10.1002/2016GL070980
- The Plasma Sheet as Natural Symmetry Plane for Dipolarization Fronts in the Earth's Magnetotail D. Frühauff & K. Glassmeier 10.1002/2017JA024682
- Simulating the Ion-trapping Acceleration at Rippled Reconnection Fronts K. Bai et al. 10.3847/1538-4357/ac3a08
- Anchor Point of Electron Acceleration around Dipolarization Fronts in Space Plasmas C. Liu & H. Fu 10.3847/2041-8213/ab06cb
- An explanation of auroral intensification during the substorm expansion phase Z. Yao et al. 10.1002/2017JA024029
- Simulations of Electron Energization and Injection by BBFs Using High‐Resolution LFM MHD Fields W. Eshetu et al. 10.1029/2018JA025789
- First Observation of Kinetic Alfvén Waves behind Reconnection Front in Terrestrial Magnetotail Z. Wang et al. 10.3847/1538-4357/ad0cb5
- Two fundamentally different drivers of dipolarizations at Saturn Z. Yao et al. 10.1002/2017JA024060
- Electron Surfing Acceleration at Rippled Reconnection Fronts K. Bai et al. 10.3847/1538-4357/ac67f1
- 地球磁层中能量的注入<bold>、</bold>传输和耗散 慧. 符 & 晋. 曹 10.1360/SSTe-2024-0208
- Electron Jet Detected by MMS at Dipolarization Front C. Liu et al. 10.1002/2017GL076509
- Dipolarization fronts and magnetic flux transport A. Lui 10.1186/s40562-015-0032-1
- Substructures within a dipolarization front revealed by high‐temporal resolution Cluster observations Z. Yao et al. 10.1002/2015JA022238
- A Statistical Study on the Properties of Dips Ahead of Dipolarization Fronts Observed by MMS D. Schmid et al. 10.1029/2018JA026062
- Broadband Electrostatic Waves Behind Dipolarization Front: Observations and Analyses Z. Guo et al. 10.1029/2021JA029900
- Three dimensional analytical model of dipolarizing flux bundles F. Beyene et al. 10.1063/1.5032111
- Collisionless magnetic reconnection in the magnetosphere Q. Lu et al. 10.1088/1674-1056/ac76ab
- Dynamics of the Magnetotail Plasma Sheet Current A. Lui 10.3390/atmos14020222
- Electromagnetic disturbances observed near the dip region ahead of dipolarization front D. Zhao et al. 10.1002/2016GL068033
- Subion‐Scale Flux Rope Nested Inside Ion‐Scale Flux Rope in Earth's Magnetotail R. He et al. 10.1029/2021GL096169
- On the current density reduction ahead of dipolarization fronts S. Lu et al. 10.1002/2016JA022754
- Formation of Rolling‐Pin Distribution of Suprathermal Electrons Behind Dipolarization Fronts W. Fu et al. 10.1029/2021JA029642
- Pitch Angle Scattering of Energetic Electrons by BBFs W. Eshetu et al. 10.1029/2018JA025788
- Plasma sheet injections into the inner magnetosphere: Two‐way coupled OpenGGCM‐RCM model results W. Cramer et al. 10.1002/2017JA024104
- High‐Frequency Electrostatic Waves Modulated by Whistler Waves Behind Dipolarization Front Z. Chen et al. 10.1029/2022JA030935
- Hall Nature Ahead of Dipolarization Fronts in the Earth's Magnetotail: A Statistical Study for MMS Data L. Wang et al. 10.1029/2021GL097075
- Two Classes of Equatorial Magnetotail Dipolarization Fronts Observed by Magnetospheric Multiscale Mission: A Statistical Overview S. Alqeeq et al. 10.1029/2023JA031738
- Energy Range of Electron Rolling Pin Distribution Behind Dipolarization Front M. Zhao et al. 10.1029/2019GL082100
- On the Magnetic Dip Ahead of the Dipolarization Fronts H. Huang et al. 10.1029/2021JA029783
- On the Acceleration and Anisotropy of Ions Within Magnetotail Dipolarizing Flux Bundles X. Zhou et al. 10.1002/2017JA024901
- A direct examination of the dynamics of dipolarization fronts using MMS Z. Yao et al. 10.1002/2016JA023401
- Magnetotail dipolarization fronts and particle acceleration: A review H. Fu et al. 10.1007/s11430-019-9551-y
- Coupling between the Magnetospheric Dipolarization Front and the Earth’s Ionosphere by Ultralow-frequency Waves P. Qin et al. 10.3847/2041-8213/ab8e48
- Statistical analysis of magnetotail fast flows and related magnetic disturbances D. Frühauff & K. Glassmeier 10.5194/angeo-34-399-2016
- Suprathermal particle energization in dipolarization fronts: Particle‐in‐cell simulations S. Lu et al. 10.1002/2016JA022815
- Auroral streamer and its role in driving wave-like pre-onset aurora Z. Yao et al. 10.1186/s40562-017-0075-6
- Off‐equatorial current‐driven instabilities ahead of approaching dipolarization fronts X. Zhang et al. 10.1002/2016JA023421
- An Unexpected Whistler Wave Generation Around Dipolarization Front G. Chen et al. 10.1029/2020JA028957
Latest update: 15 Jan 2025
Short summary
We use THEMIS large data set of dipolarization front events to build a 2-D pressure distribution in XZ plane, and thus derive the current system around the dipolarization front. Our results show that a banana current loop is formed around the dipolarization front. This current is also suggested to be the reason for the magnetic dip observed ahead of the dipolarization front. In addition, the current density is too small to contribute a substorm current wedge.
We use THEMIS large data set of dipolarization front events to build a 2-D pressure distribution...