Articles | Volume 33, issue 10
https://doi.org/10.5194/angeo-33-1285-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/angeo-33-1285-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Wide-banded NTC radiation: local to remote observations by the four Cluster satellites
P. M. E. Décréau
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Orléans, France
S. Aoutou
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Orléans, France
A. Denazelle
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Orléans, France
I. Galkina
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Orléans, France
J.-L. Rauch
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Orléans, France
X. Vallières
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Orléans, France
P. Canu
Laboratoire de Physique des Plasmas (LPP), Ecole Polytechnique, Palaiseau, France
S. Rochel Grimald
Office National d'Études et de REcherches Aérospatiales (ONERA), The French Aerospace Laboratory, Toulouse, France
F. El-Lemdani Mazouz
formerly at: Laboratoire ATmosphère, Milieux, Observations Spatiales (LATMOS), Guyancourt, France
F. Darrouzet
Belgian Institute for Space Aeronomy (IASB-BIRA), Brussels, Belgium
Related authors
G. Verbanac, V. Pierrard, M. Bandić, F. Darrouzet, J.-L. Rauch, and P. Décréau
Ann. Geophys., 33, 1271–1283, https://doi.org/10.5194/angeo-33-1271-2015, https://doi.org/10.5194/angeo-33-1271-2015, 2015
Short summary
Short summary
Using Cluster data, we develop plasmapause Lpp models parameterized by solar wind coupling functions and geomagnetic activity indices. We show that the Lpp response to the changes in the interplanetary conditions depends on the magnetic local time. The faster plasmapause response is observed in the post-midnight sector. At low activity, Lpp exhibits the largest values on the dayside. For enhanced activity, displacements towards larger values on the evening side are identified.
P. M. E. Décréau, S. Kougblénou, G. Lointier, J.-L. Rauch, J.-G. Trotignon, X. Vallières, P. Canu, S. Rochel Grimald, F. El-Lemdani Mazouz, and F. Darrouzet
Ann. Geophys., 31, 2097–2121, https://doi.org/10.5194/angeo-31-2097-2013, https://doi.org/10.5194/angeo-31-2097-2013, 2013
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Remi Benacquista, Sandrine Rochel, and Guy Rolland
Ann. Geophys., 35, 147–159, https://doi.org/10.5194/angeo-35-147-2017, https://doi.org/10.5194/angeo-35-147-2017, 2017
Short summary
Short summary
The Earth's magnetic field creates a magnetic bulk all around it called the magnetosphere. This bulk a priori protects us from the particles coming from the sun but sometimes undergoes violent events such as interplanetary coronal mass ejections. These cause the entry of particles into the magnetosphere, which can be harmful for satellites. In this paper, we performed a statistical study to characterize the interplanetary coronal mass ejections and their ability to disturb the magnetosphere.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
G. Verbanac, V. Pierrard, M. Bandić, F. Darrouzet, J.-L. Rauch, and P. Décréau
Ann. Geophys., 33, 1271–1283, https://doi.org/10.5194/angeo-33-1271-2015, https://doi.org/10.5194/angeo-33-1271-2015, 2015
Short summary
Short summary
Using Cluster data, we develop plasmapause Lpp models parameterized by solar wind coupling functions and geomagnetic activity indices. We show that the Lpp response to the changes in the interplanetary conditions depends on the magnetic local time. The faster plasmapause response is observed in the post-midnight sector. At low activity, Lpp exhibits the largest values on the dayside. For enhanced activity, displacements towards larger values on the evening side are identified.
P. Robert, N. Cornilleau-Wehrlin, R. Piberne, Y. de Conchy, C. Lacombe, V. Bouzid, B. Grison, D. Alison, and P. Canu
Geosci. Instrum. Method. Data Syst., 3, 153–177, https://doi.org/10.5194/gi-3-153-2014, https://doi.org/10.5194/gi-3-153-2014, 2014
H. Gunell, G. Stenberg Wieser, M. Mella, R. Maggiolo, H. Nilsson, F. Darrouzet, M. Hamrin, T. Karlsson, N. Brenning, J. De Keyser, M. André, and I. Dandouras
Ann. Geophys., 32, 991–1009, https://doi.org/10.5194/angeo-32-991-2014, https://doi.org/10.5194/angeo-32-991-2014, 2014
P. M. E. Décréau, S. Kougblénou, G. Lointier, J.-L. Rauch, J.-G. Trotignon, X. Vallières, P. Canu, S. Rochel Grimald, F. El-Lemdani Mazouz, and F. Darrouzet
Ann. Geophys., 31, 2097–2121, https://doi.org/10.5194/angeo-31-2097-2013, https://doi.org/10.5194/angeo-31-2097-2013, 2013
Short summary
We present here cases of wide banded Non Thermal Continuum (NTC) observed from the multi-point Cluster observatory. We point out that a large portion of the plasmasphere boundary layer, covering magnetic latitudes from 0 to above 30°, is radiating these radio waves. The radiation is confined inside multiple beams of small cone angles. We show how the spectral signature evolves, from integer harmonics of the electron gyrofrequency, when the observatory moves away from their sources.
We present here cases of wide banded Non Thermal Continuum (NTC) observed from the multi-point...
Special issue