Articles | Volume 32, issue 4
https://doi.org/10.5194/angeo-32-401-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-32-401-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Wind patterns associated with the development of daytime thunderstorms over Istria
G. Poljak
Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, Croatia
M. T. Prtenjak
Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, Croatia
M. Kvakić
CNRM-GAME, Meteo-France/CNRS URA 1357, Toulouse Cedex, France
N. Strelec Mahović
Meteorological and Hydrological Service, Zagreb, Croatia
Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, Croatia
Related authors
No articles found.
Maurin Zouzoua, Fabienne Lohou, Paul Assamoi, Marie Lothon, Véronique Yoboue, Cheikh Dione, Norbert Kalthoff, Bianca Adler, Karmen Babić, Xabier Pedruzo-Bagazgoitia, and Solène Derrien
Atmos. Chem. Phys., 21, 2027–2051, https://doi.org/10.5194/acp-21-2027-2021, https://doi.org/10.5194/acp-21-2027-2021, 2021
Short summary
Short summary
Based on a field experiment conducted in June and July 2016, we analyzed the daytime breakup of continental low-level stratiform clouds over southern West Africa in order to provide complementary guidance for model evaluation during the monsoon season. Those clouds exhibit weaker temperature and moisture jumps at the top compared to marine stratiform clouds. Their lifetime and the transition towards shallow convective clouds during daytime hours depend on their coupling with the surface.
Barbara Altstädter, Konrad Deetz, Bernhard Vogel, Karmen Babić, Cheikh Dione, Federica Pacifico, Corinne Jambert, Friederike Ebus, Konrad Bärfuss, Falk Pätzold, Astrid Lampert, Bianca Adler, Norbert Kalthoff, and Fabienne Lohou
Atmos. Chem. Phys., 20, 7911–7928, https://doi.org/10.5194/acp-20-7911-2020, https://doi.org/10.5194/acp-20-7911-2020, 2020
Short summary
Short summary
We present the high vertical variability of the black carbon (BC) mass concentration measured with the unmanned aerial system ALADINA during the field experiment of DACCIWA. The COSMO-ART model output was applied for the campaign period and is compared with the observational BC data during a case study on 14–15 July 2016. Enhanced BC concentrations were related to transport processes to the measurement site by maritime inflow and not to local emissions as initially expected.
Zvjezdana B. Klaić, Karmen Babić, and Mirko Orlić
Hydrol. Earth Syst. Sci., 24, 3399–3416, https://doi.org/10.5194/hess-24-3399-2020, https://doi.org/10.5194/hess-24-3399-2020, 2020
Short summary
Short summary
Fine-resolution lake temperature measurements (2 min, 15 depths) show different lake responses to atmospheric forcings: (1) continuous diurnal oscillations in the temperature in the first 5 m of the lake, (2) occasional diurnal oscillations in the temperature at depths from 7 to 20 m, and (3) occasional surface and internal seiches. Due to the sloped lake bottom, surface seiches produced the high-frequency oscillations in the lake temperatures with periods of 9 min at depths from 9 to 17 m.
Xabier Pedruzo-Bagazgoitia, Stephan R. de Roode, Bianca Adler, Karmen Babić, Cheikh Dione, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 20, 2735–2754, https://doi.org/10.5194/acp-20-2735-2020, https://doi.org/10.5194/acp-20-2735-2020, 2020
Short summary
Short summary
Using a high-resolution model we simulate the transition from night to day clouds on southern West Africa using observations from the DACCIWA project. We find that the radiative effects of clouds help mantain a thick cloud layer in the night, while the mixing of cloud air with air above during the day, aided by moisture and heat fluxes at the surface, thins this layer and promotes its transition to other clouds. The effect of changing wind with height accelerates the transition.
Fabienne Lohou, Norbert Kalthoff, Bianca Adler, Karmen Babić, Cheikh Dione, Marie Lothon, Xabier Pedruzo-Bagazgoitia, and Maurin Zouzoua
Atmos. Chem. Phys., 20, 2263–2275, https://doi.org/10.5194/acp-20-2263-2020, https://doi.org/10.5194/acp-20-2263-2020, 2020
Short summary
Short summary
A conceptual model of the low-level stratiform clouds (LLSCs), which develop almost every night in southern West Africa, is built with the dataset acquired during the DACCIWA (Dynamics Aerosol Chemistry Cloud Interactions in West Africa) ground-based field experiment. Several processes occur during the four phases composing this diurnal cycle: the cooling of the air until saturation (stable and jet phases), LLSC and low-level jet interactions (stratus phase), and LLSC breakup (convective phase).
Karmen Babić, Norbert Kalthoff, Bianca Adler, Julian F. Quinting, Fabienne Lohou, Cheikh Dione, and Marie Lothon
Atmos. Chem. Phys., 19, 13489–13506, https://doi.org/10.5194/acp-19-13489-2019, https://doi.org/10.5194/acp-19-13489-2019, 2019
Short summary
Short summary
This study investigates differences in atmospheric conditions between nights with and without low-level stratus clouds (LLCs) over southern West Africa. We use high-quality observations collected during 2016 summer monsoon season and the ERA5 reanalysis data set. Our results show that the formation of LLCs depends on the interplay between the onset time and strength of the nocturnal low-level jet, horizontal cold-air advection, and the overall moisture level in the whole region.
Cheikh Dione, Fabienne Lohou, Marie Lothon, Bianca Adler, Karmen Babić, Norbert Kalthoff, Xabier Pedruzo-Bagazgoitia, Yannick Bezombes, and Omar Gabella
Atmos. Chem. Phys., 19, 8979–8997, https://doi.org/10.5194/acp-19-8979-2019, https://doi.org/10.5194/acp-19-8979-2019, 2019
Short summary
Short summary
Low atmospheric dynamics and low-level cloud (LLC) macrophysical properties are analyzed using in situ and remote sensing data collected from 20 June to 30 July at Savè, Benin, during the DACCIWA field campaign in 2016. We find that the low-level jet (LLJ), LLCs, monsoon flow, and maritime inflow reveal a day-to-day variability. LLCs form at the same level as the jet core height. The cloud base height is stationary at night and remains below the jet. The cloud top height is found above the jet.
Sophie L. Haslett, Jonathan W. Taylor, Konrad Deetz, Bernhard Vogel, Karmen Babić, Norbert Kalthoff, Andreas Wieser, Cheikh Dione, Fabienne Lohou, Joel Brito, Régis Dupuy, Alfons Schwarzenboeck, Paul Zieger, and Hugh Coe
Atmos. Chem. Phys., 19, 1505–1520, https://doi.org/10.5194/acp-19-1505-2019, https://doi.org/10.5194/acp-19-1505-2019, 2019
Short summary
Short summary
As the population in West Africa grows and air pollution increases, it is becoming ever more important to understand the effects of this pollution on the climate and on health. Aerosol particles can grow by absorbing water from the air around them. This paper shows that during the monsoon season, aerosol particles in the region are likely to grow significantly because of the high moisture in the air. This means that climate effects from increasing pollution will be enhanced.
Karmen Babić, Bianca Adler, Norbert Kalthoff, Hendrik Andersen, Cheikh Dione, Fabienne Lohou, Marie Lothon, and Xabier Pedruzo-Bagazgoitia
Atmos. Chem. Phys., 19, 1281–1299, https://doi.org/10.5194/acp-19-1281-2019, https://doi.org/10.5194/acp-19-1281-2019, 2019
Short summary
Short summary
The first detailed observational analysis of the complete diurnal cycle of low-level clouds (LLC) and associated atmospheric processes over southern West Africa is performed using the data gathered within the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud-Interactions in West Africa) ground-based campaign. We find cooling related to the horizontal advection, which occurs in connection with the inflow of cool maritime air mass and a prominent low-level jet, to have the dominant role in LLC formation.
Bianca Adler, Karmen Babić, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, Cheikh Dione, Xabier Pedruzo-Bagazgoitia, and Hendrik Andersen
Atmos. Chem. Phys., 19, 663–681, https://doi.org/10.5194/acp-19-663-2019, https://doi.org/10.5194/acp-19-663-2019, 2019
Short summary
Short summary
This study deals with nocturnal stratiform low-level clouds that frequently form in the atmospheric boundary layer over southern West Africa. We use observational data from 11 nights to characterize the clouds and intranight variability of boundary layer conditions as well as to assess the physical processes relevant for cloud formation. We find that cooling is crucial to reach saturation and a large part of the cooling is related to horizontal advection of cool air from the Gulf of Guinea.
Norbert Kalthoff, Fabienne Lohou, Barbara Brooks, Gbenga Jegede, Bianca Adler, Karmen Babić, Cheikh Dione, Adewale Ajao, Leonard K. Amekudzi, Jeffrey N. A. Aryee, Muritala Ayoola, Geoffrey Bessardon, Sylvester K. Danuor, Jan Handwerker, Martin Kohler, Marie Lothon, Xabier Pedruzo-Bagazgoitia, Victoria Smith, Lukman Sunmonu, Andreas Wieser, Andreas H. Fink, and Peter Knippertz
Atmos. Chem. Phys., 18, 2913–2928, https://doi.org/10.5194/acp-18-2913-2018, https://doi.org/10.5194/acp-18-2913-2018, 2018
Short summary
Short summary
Extended low-level stratus clouds (LLC) form frequently in southern West Africa during the night-time and persist long into the next day. They affect the radiation budget, atmospheric boundary-layer (BL) evolution and regional climate. The relevant processes governing their formation and dissolution are not fully understood. Thus, a field campaign was conducted in summer 2016, which provided a comprehensive data set for process studies, specifically of interactions between LLC and BL conditions.