Articles | Volume 32, issue 3 
            
                
                    
            
            
            https://doi.org/10.5194/angeo-32-197-2014
                    © Author(s) 2014. This work is distributed under 
the Creative Commons Attribution 3.0 License.
                the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-32-197-2014
                    © Author(s) 2014. This work is distributed under 
the Creative Commons Attribution 3.0 License.
                the Creative Commons Attribution 3.0 License.
Automated identification and tracking of polar-cap plasma patches at solar minimum
R. Burston
                                            University of Bath, Bath, UK
                                        
                                    K. Hodges
                                            University of Reading, Reading, UK
                                        
                                    I. Astin
                                            University of Bath, Bath, UK
                                        
                                    P. T. Jayachandran
                                            University of New Brunswick, Fredericton, Canada
                                        
                                    Related authors
No articles found.
P. Prikryl, R. Ghoddousi-Fard, E. G. Thomas, J. M. Ruohoniemi, S. G. Shepherd, P. T. Jayachandran, D. W. Danskin, E. Spanswick, Y. Zhang, Y. Jiao, and Y. T. Morton
                                    Ann. Geophys., 33, 637–656, https://doi.org/10.5194/angeo-33-637-2015, https://doi.org/10.5194/angeo-33-637-2015, 2015
                                    Short summary
                                    Short summary
                                            
                                                Rapid fluctuations in amplitude and phase of radio waves passing through the ionosphere degrade GPS positional accuracy and can lead to navigational errors, particularly during geomagnetic storms. As a function of magnetic latitude and local time, regions of GPS phase scintillation at high latitudes are identified in the context of coupling between the solar wind and the magnetosphere-ionosphere system, which primarily depends on the interplanetary magnetic field magnitude and orientation.
                                            
                                            
                                        P. Prikryl, R. Ghoddousi-Fard, L. Spogli, C. N. Mitchell, G. Li, B. Ning, P. J. Cilliers, V. Sreeja, M. Aquino, M. Terkildsen, P. T. Jayachandran, Y. Jiao, Y. T. Morton, J. M. Ruohoniemi, E. G. Thomas, Y. Zhang, A. T. Weatherwax, L. Alfonsi, G. De Franceschi, and V. Romano
                                    Ann. Geophys., 33, 657–670, https://doi.org/10.5194/angeo-33-657-2015, https://doi.org/10.5194/angeo-33-657-2015, 2015
                                    Short summary
                                    Short summary
                                            
                                                A series of interplanetary coronal mass ejections in the period 7–17 March 2012 caused geomagnetic storms that strongly affected the high-latitude ionosphere in the Northern and Southern Hemisphere. Interhemispheric comparison of GPS phase scintillation reveals commonalities as well as asymmetries, as a consequence of the coupling between the solar wind and magnetosphere. The interhemispheric asymmetries are primarily caused by the dawn-dusk component of the interplanetary magnetic field.
                                            
                                            
                                        P. Prikryl, P. T. Jayachandran, R. Chadwick, and T. D. Kelly
                                    Ann. Geophys., 33, 531–545, https://doi.org/10.5194/angeo-33-531-2015, https://doi.org/10.5194/angeo-33-531-2015, 2015
                            K. E. Knowland, R. M. Doherty, and K. I. Hodges
                                    Atmos. Chem. Phys., 15, 3605–3628, https://doi.org/10.5194/acp-15-3605-2015, https://doi.org/10.5194/acp-15-3605-2015, 2015
                                    Short summary
                                    Short summary
                                            
                                                Novel use of combined meteorology and composition reanalysis data and compositing methodologies to characterize pollutant distributions of ozone (O3) and carbon monoxide (CO) in "typical" intense springtime storms versus the background environment for the period 2003--2012. Clear signals of O3 and CO redistributed horizontally and vertically throughout storms. In particular, the lofting of CO-rich/O3-poor air in the warm conveyor belt and the descent of O3-rich/CO-poor air in the dry intrusion.
                                            
                                            
                                        J. F. Roberts, A. J. Champion, L. C. Dawkins, K. I. Hodges, L. C. Shaffrey, D. B. Stephenson, M. A. Stringer, H. E. Thornton, and B. D. Youngman
                                    Nat. Hazards Earth Syst. Sci., 14, 2487–2501, https://doi.org/10.5194/nhess-14-2487-2014, https://doi.org/10.5194/nhess-14-2487-2014, 2014
                            P. Prikryl, R. Ghoddousi-Fard, B. S. R. Kunduri, E. G. Thomas, A. J. Coster, P. T. Jayachandran, E. Spanswick, and D. W. Danskin
                                    Ann. Geophys., 31, 805–816, https://doi.org/10.5194/angeo-31-805-2013, https://doi.org/10.5194/angeo-31-805-2013, 2013
                            T. Krumpen, M. Janout, K. I. Hodges, R. Gerdes, F. Girard-Ardhuin, J. A. Hölemann, and S. Willmes
                                    The Cryosphere, 7, 349–363, https://doi.org/10.5194/tc-7-349-2013, https://doi.org/10.5194/tc-7-349-2013, 2013