Articles | Volume 32, issue 12
https://doi.org/10.5194/angeo-32-1533-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-32-1533-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Correlation studies for B-spline modeled F2 Chapman parameters obtained from FORMOSAT-3/COSMIC data
M. Limberger
CORRESPONDING AUTHOR
Technische Universität München – Institute of Astronomical and Physical Geodesy (IAPG), Arcisstr. 21, 80333 Munich, Germany
Deutsches Geodätisches Forschungsinstitut (DGFI), Alfons-Goppel-Str. 11, 80539 Munich, Germany
W. Liang
Deutsches Geodätisches Forschungsinstitut (DGFI), Alfons-Goppel-Str. 11, 80539 Munich, Germany
M. Schmidt
Deutsches Geodätisches Forschungsinstitut (DGFI), Alfons-Goppel-Str. 11, 80539 Munich, Germany
D. Dettmering
Deutsches Geodätisches Forschungsinstitut (DGFI), Alfons-Goppel-Str. 11, 80539 Munich, Germany
M. Hernández-Pajares
UPC-IonSAT Research Group, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
U. Hugentobler
Technische Universität München – Institute of Astronomical and Physical Geodesy (IAPG), Arcisstr. 21, 80333 Munich, Germany
Related authors
M. Limberger, W. Liang, M. Schmidt, D. Dettmering, and U. Hugentobler
Ann. Geophys., 31, 2215–2227, https://doi.org/10.5194/angeo-31-2215-2013, https://doi.org/10.5194/angeo-31-2215-2013, 2013
Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering
The Cryosphere, 17, 809–825, https://doi.org/10.5194/tc-17-809-2023, https://doi.org/10.5194/tc-17-809-2023, 2023
Short summary
Short summary
Thinning sea ice has significant impacts on the energy exchange between the atmosphere and the ocean. In this study we present visual and quantitative comparisons of thin-ice detections obtained from classified Cryosat-2 radar reflections and thin-ice-thickness estimates derived from MODIS thermal-infrared imagery. In addition to good comparability, the results of the study indicate the potential for a deeper understanding of sea ice in the polar seas and improved processing of altimeter data.
Michael G. Hart-Davis, Gaia Piccioni, Denise Dettmering, Christian Schwatke, Marcello Passaro, and Florian Seitz
Earth Syst. Sci. Data, 13, 3869–3884, https://doi.org/10.5194/essd-13-3869-2021, https://doi.org/10.5194/essd-13-3869-2021, 2021
Short summary
Short summary
Ocean tides are an extremely important process for a variety of oceanographic applications, particularly in understanding coastal sea-level rise. Tidal signals influence satellite altimetry estimations of the sea surface, which has resulted in the development of ocean tide models to account for such signals. The EOT20 ocean tide model has been developed at DGFI-TUM using residual analysis of satellite altimetry, with the focus on improving the estimation of ocean tides in the coastal region.
Denise Dettmering, Felix L. Müller, Julius Oelsmann, Marcello Passaro, Christian Schwatke, Marco Restano, Jérôme Benveniste, and Florian Seitz
Earth Syst. Sci. Data, 13, 3733–3753, https://doi.org/10.5194/essd-13-3733-2021, https://doi.org/10.5194/essd-13-3733-2021, 2021
Short summary
Short summary
In this study, a new gridded altimetry-based regional sea level dataset for the North Sea is presented, named North SEAL. It is based on long-term multi-mission cross-calibrated altimetry data consistently preprocessed with coastal dedicated algorithms. On a 6–8 km wide triangular mesh, North SEAL provides time series of monthly sea level anomalies as well as sea level trends and amplitudes of the mean annual sea level cycle for the period 1995–2019 for various applications.
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244, https://doi.org/10.5194/essd-13-2227-2021, https://doi.org/10.5194/essd-13-2227-2021, 2021
Short summary
Short summary
GRACE provides us with global changes of terrestrial water storage. However, the data have a low spatial resolution, and localized storage changes in lakes/reservoirs or mass change due to earthquakes causes leakage effects. The correction product RECOG RL01 presented in this paper accounts for these effects. Its application allows for improving calibration/assimilation of GRACE into hydrological models and better drought detection in earthquake-affected areas.
Julius Oelsmann, Marcello Passaro, Denise Dettmering, Christian Schwatke, Laura Sánchez, and Florian Seitz
Ocean Sci., 17, 35–57, https://doi.org/10.5194/os-17-35-2021, https://doi.org/10.5194/os-17-35-2021, 2021
Short summary
Short summary
Vertical land motion (VLM) significantly contributes to relative sea level change. Here, we improve the accuracy and precision of VLM estimates, which are based on the difference of altimetry tide gauge observations. Advanced coastal altimetry and an improved coupling procedure of along-track altimetry data and high-frequency tide gauge observations are key factors for a greater comparability of altimetry and tide gauges in the coastal zone and thus for more reliable VLM estimates.
Tatjana Gerzen, David Minkwitz, Michael Schmidt, and Eren Erdogan
Ann. Geophys., 38, 1171–1189, https://doi.org/10.5194/angeo-38-1171-2020, https://doi.org/10.5194/angeo-38-1171-2020, 2020
Short summary
Short summary
We focus on reconstructing the topside ionosphere and plasmasphere and assimilating the space-based Global Navigation Satellite System slant total electron content (STEC) measurements with an ensemble Kalman filter (EnKF). We present methods for realizing the propagation step without a physical model. We investigate the capability of our estimations to reconstruct independent STEC and electron density measurements. We compare the EnKF approach with SMART+ and the 3D ionosphere model NeQuick.
Felix L. Müller, Denise Dettmering, Claudia Wekerle, Christian Schwatke, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
Earth Syst. Sci. Data, 11, 1765–1781, https://doi.org/10.5194/essd-11-1765-2019, https://doi.org/10.5194/essd-11-1765-2019, 2019
Short summary
Short summary
Polar regions by satellite-altimetry-derived geostrophic currents (GCs) suffer from irregular and sparse data coverage. Therefore, a new dataset is presented, combining along-track derived dynamic ocean topography (DOT) heights with simulated differential water heights. For this purpose, a combination method, based on principal component analysis, is used. The results are combined with spatio-temporally consistent DOT and derived GC representations on unstructured, triangular formulated grids.
Andreas Goss, Michael Schmidt, Eren Erdogan, Barbara Görres, and Florian Seitz
Ann. Geophys., 37, 699–717, https://doi.org/10.5194/angeo-37-699-2019, https://doi.org/10.5194/angeo-37-699-2019, 2019
Short summary
Short summary
This paper describes an approach to model VTEC solely from NRT GNSS observations by generating a multi-scale representation (MSR) based on B-splines. The unknown model parameters are estimated by means of a Kalman filter. A number of products are created which differ both in their spectral and temporal resolution. The validation studies show that the product with the highest resolution, based on NRT input data, is of higher accuracy than others used within the selected investigation time span.
Qing Liu, Michael Schmidt, Roland Pail, and Martin Willberg
Solid Earth Discuss., https://doi.org/10.5194/se-2019-60, https://doi.org/10.5194/se-2019-60, 2019
Preprint withdrawn
Short summary
Short summary
Regularization is indispensable in regional gravity field modelling. In this paper, we propose two new approaches for the regularization parameter determination, which combine the L-curve method and variance component estimation (VCE). The performance of each method is studied for combining heterogeneous observations using spherical radial basis functions. The results show that our newly proposed methods are decent and stable for regularization parameter determination.
Felix L. Müller, Claudia Wekerle, Denise Dettmering, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
The Cryosphere, 13, 611–626, https://doi.org/10.5194/tc-13-611-2019, https://doi.org/10.5194/tc-13-611-2019, 2019
Short summary
Short summary
Knowledge of the dynamic ocean topography (DOT) enables studying changes of ocean surface currents. The DOT can be derived by satellite altimetry measurements or by models. However, in polar regions, altimetry-derived sea surface heights are affected by sea ice. Model representations are consistent but impacted by the underlying functional backgrounds and forcing models. The present study compares results from both data sources in order to investigate the potential for a combination of the two.
Sergei Rudenko, Saskia Esselborn, Tilo Schöne, and Denise Dettmering
Solid Earth, 10, 293–305, https://doi.org/10.5194/se-10-293-2019, https://doi.org/10.5194/se-10-293-2019, 2019
Short summary
Short summary
A terrestrial reference frame (TRF) realization is a basis for precise orbit determination of Earth-orbiting artificial satellites and sea level studies. We investigate the impact of a switch from an older TRF realization (ITRF2008) to a new one (ITRF2014) on the quality of orbits of three altimetry satellites (TOPEX/Poseidon, Jason-1, and Jason-2) for 1992–2015, but especially from 2009 onwards, and on altimetry products computed using the satellite orbits derived using ITRF2014.
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018, https://doi.org/10.5194/angeo-36-1141-2018, 2018
Eva Boergens, Karina Nielsen, Ole B. Andersen, Denise Dettmering, and Florian Seitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-217, https://doi.org/10.5194/hess-2017-217, 2017
Revised manuscript not accepted
Short summary
Short summary
The water levels of the Mekong River are observed with the SAR altimeter measurements of CryoSat-2. Even small rivers in the river system with a width of 50 m can be observed due to the higher resolution of the SAR measurements. To identify the rivers regardless of a land-water-mask we employ an unsupervised classification on features derived from the SAR measurements. The river water levels are validated and compared to gauge and Envisat data which shows the good performance of the SAR data.
Yannick Béniguel, Iurii Cherniak, Alberto Garcia-Rigo, Pierrick Hamel, Manuel Hernández-Pajares, Roland Kameni, Anton Kashcheyev, Andrzej Krankowski, Michel Monnerat, Bruno Nava, Herbert Ngaya, Raül Orus-Perez, Hughes Secrétan, Damien Sérant, Stefan Schlüter, and Volker Wilken
Ann. Geophys., 35, 377–391, https://doi.org/10.5194/angeo-35-377-2017, https://doi.org/10.5194/angeo-35-377-2017, 2017
Short summary
Short summary
The work presented in this paper was done in the frame of an ESA activity. The aim of this project was to study ionosphere disturbances liable to impact navigation systems. This project has been running over several years, allowing enough data acquisition to gain sufficient knowledge of ionosphere variability. It was launched to support the European Satellite-Based Augmented System (EGNOS), also considering a possible extension of the system over Africa.
Eren Erdogan, Michael Schmidt, Florian Seitz, and Murat Durmaz
Ann. Geophys., 35, 263–277, https://doi.org/10.5194/angeo-35-263-2017, https://doi.org/10.5194/angeo-35-263-2017, 2017
Short summary
Short summary
Although the number of terrestrial GNSS receivers is rapidly growing, the rather unevenly distributed observations do not allow the generation of high-resolution global ionosphere products. With the regionally enormous increase in GNSS data, the demands on near real-time products are growing very fast. Thus, a procedure for estimating the vertical total electron content based on B-spline representations and Kalman filtering was developed and validated by self-consistency check and altimetry.
C. Schwatke, D. Dettmering, W. Bosch, and F. Seitz
Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, https://doi.org/10.5194/hess-19-4345-2015, 2015
M. Limberger, W. Liang, M. Schmidt, D. Dettmering, and U. Hugentobler
Ann. Geophys., 31, 2215–2227, https://doi.org/10.5194/angeo-31-2215-2013, https://doi.org/10.5194/angeo-31-2215-2013, 2013
Short summary
The determination of ionospheric key quantities such as the maximum electron density of the F2 layer, the corresponding F2 peak height and the F2 scale height are of high relevance in 4-D ionosphere modeling to provide information on the vertical structure of the electron density distribution. This paper discusses mathematical correlations between these parameters as derived from FORMOSAT-3/COSMIC radio occultations and regionally parameterized by means of polynomial B-splines.
The determination of ionospheric key quantities such as the maximum electron density of the F2...