Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 32, issue 8
Ann. Geophys., 32, 1011–1023, 2014
https://doi.org/10.5194/angeo-32-1011-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 32, 1011–1023, 2014
https://doi.org/10.5194/angeo-32-1011-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Regular paper 22 Aug 2014

Regular paper | 22 Aug 2014

Pre-onset auroral signatures and subsequent development of substorm auroras: a development of ionospheric loop currents at the onset latitudes

O. Saka1, K. Hayashi2, and M. Thomsen3 O. Saka et al.
  • 1Office Geophysik, Ogoori, Japan
  • 2University of Tokyo, Tokyo, Japan
  • 3Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract. Substorm auroras observed on 17 January 1994 were localized within the field of view of an all-sky imager installed at Dawson City (DWS, 65.7° ILAT). In association with the enhancement of the anti-sunward convection in the polar cap and the ion flux enhancement in 1–6 keV at geosynchronous altitudes, a wave-like structure propagating equatorward to the onset latitudes with a high wave number in azimuth (m ~ 76, T ~ 120 s) was observed 30 min prior to the activation in the equatorward latitudes. The activation of the auroras in the equatorward latitudes and the subsequent poleward expansion lasted for approximately 6 min until a diffuse aurora formed. The auroras in the last 6 min were isolated and localized within the field of view of DWS, from 400 km west to 400 km east, and accompanied the magnetic pulse at the optical station. The magnetic pulse is interpreted by the propagating ionospheric current loop with a size comparable to the isolated auroras (~ 1000 km). We conclude that the wave-like structures in the pre-onset interval relate to the intrusion of the plasma-sheet plasmas from the tail by the convection. The plasmas from the tail eventually developed the ionospheric loop currents at the onset latitudes, in association with the triggering of the bead-like rippling of auroras and subsequent breaking out from the onset latitudes.

Publications Copernicus
Download
Citation