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Abstract. Substorm auroras observed on 17 January 1994
were localized within the field of view of an all-sky imager
installed at Dawson City (DWS, 65.7◦ ILAT). In association
with the enhancement of the anti-sunward convection in the
polar cap and the ion flux enhancement in 1–6 keV at geosyn-
chronous altitudes, a wave-like structure propagating equa-
torward to the onset latitudes with a high wave number in az-
imuth (m ∼ 76,T ∼ 120 s) was observed 30 min prior to the
activation in the equatorward latitudes. The activation of the
auroras in the equatorward latitudes and the subsequent pole-
ward expansion lasted for approximately 6 min until a diffuse
aurora formed. The auroras in the last 6 min were isolated
and localized within the field of view of DWS, from 400 km
west to 400 km east, and accompanied the magnetic pulse
at the optical station. The magnetic pulse is interpreted by
the propagating ionospheric current loop with a size compa-
rable to the isolated auroras (∼ 1000 km). We conclude that
the wave-like structures in the pre-onset interval relate to the
intrusion of the plasma-sheet plasmas from the tail by the
convection. The plasmas from the tail eventually developed
the ionospheric loop currents at the onset latitudes, in associ-
ation with the triggering of the bead-like rippling of auroras
and subsequent breaking out from the onset latitudes.

Keywords. Ionosphere (auroral ionosphere) – magneto-
spheric physics (auroral phenomena; storms and substorms)

1 Introduction

Pi2 pulsations are periodic (50–170 s) oscillations of short
duration (∼ 15 min) observed in geomagnetic fields, particle
flux, and in auroral luminosity related to the substorm ex-
pansion (Saka et al., 1999; Solovyev et al., 2000; Shiokawa
et al., 2002). Periodic intensifications or propagations of
field-aligned currents in a substorm current wedge (SCW)
were proposed as the source of oscillations of the geomag-
netic fields (Sakurai and McPherron, 1983; Baumjohann and
Glassmeier, 1984; Lester et al., 1983; Rostoker and Samson,
1981; Samson, 1982). The periodic intensification of the
electrojet, an ionospheric part of the SCW, is considered a
source of the Pi2 signals associated with the auroral intensi-
fications in the expansion phase (Nishimura et al., 2012). It is
argued, however, that the SCW is composed of a number of
localized current elements. Averaged current elements may
be described as the traditional view of the SCW (Rae et al.,
2013).

Meanwhile, one of the features of a high-latitude Pi2 is
its longitudinal propagation with a finite wave number ofm

(Samson and Harrold, 1985; Uozumi et al., 2004; Saka et al.,
2012a). Herem denotes azimuthal wave numbers encircling
the Earth. For a finitem, the poloidal (meridional) and the
toroidal (azimuthal) components of the field line oscillations
couple in the magnetosphere. In particular, the poloidal mode
becomes guided along the field lines for short-lived, transient
oscillations, where the oscillations may not last long enough
to establish true cavity modes (Radoski, 1967, 1974). All dis-
turbances tend to become guided along the field lines because
parallel component diminishes with time, which is referred to
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as a cavity/wave-guide mode (Allan et al., 1996). Compres-
sional inputs with azimuthal wave numberm imposed at the
outer boundary generate a cavity/wave-guide mode in the in-
ner magnetosphere (Allan et al., 1985; Lee and Lysak, 1991;
Lee, 1998). The cavity/wave-guide mode is used to explain
Pi2s, both within the plasmasphere (Takahashi et al., 1992
and references in Keiling and Takahashi, 2011) and outside
the plasmapause (Kim et al., 2005; Teramoto et al., 2008).

These two Pi2 models, an ionospheric current model and
a cavity/wave-guide model, have been discussed individu-
ally. To reconcile those two models, an excitation of the
current vortex in the ionosphere by a guided poloidal wave
was proposed (Saka et al., 2012b). The current vortex in the
ionosphere can also be regarded as current flows established
by the currents carried by the poloidally polarized waves
(Southwood and Hughes, 1985). The poloidal waves can be
excited in the magnetospheric equatorial plane by the con-
vection surge (Quinn and Southwood, 1982) or by the dia-
magnetic currents flowing eastward associated with the sub-
storm ion injection (Saka et al., 2012b). The individual cur-
rent vortex may form the current element and constitute a
large-scale current system when the multiple vortices congre-
gate (Amm et al., 2002). The ionospheric flow vortex associ-
ated with the Pi2 pulsations was reported using radars in the
auroral zone (Sutcliffe and Nielsen, 1990, 1992; Bradshaw
and Lester, 1997).

In this report, substorm auroras were studied beginning
from the pre-onset interval to the subsequent development of
auroras. This case study shows that fresh plasmas from the
tail eventually developed the vortical currents in the iono-
sphere.

2 Observation

2.1 Aurora and ground magnetometer observations

In this analysis, we used the fluxgate magnetometer data
from high-latitude ground stations of ERK, BRW, KOT,
CMO, DWS, SIT, YKC, FSI, and FMC as well as low-
latitude stations of GUA and PFO, and the plasma measure-
ments by the Magnetospheric Plasma Analyzer (MPA) on
board the L9 satellite. Refer to Birn et al. (1997) for details
regarding MPA instruments. The invariant latitudes and the
MLT (at 10:00 UT) of the ground stations and the satellite
footprints calculated by the IGRF (International Geomag-
netic Reference Field) model are listed in Table 1.

Figure 1 depicts, from top to bottom, a keogram cross-
ing 150 km west of DWS for the interval 09:00–11:00 UT,
17 January 1994 and the fluxgate magnetometer data from
09:00 to 11:00 UT for stations in the auroral zone (BRW,
KOT, CMO, DWS, SIT, FSI, YKC, and FMC) and in the
polar cap (ERK).H component (pointing magnetic north) is
plotted for the stations in the auroral zone, and the dawn-
to-dusk component (positive duskward) for the polar cap

Table 1.Invariant latitudes and MLT of ground stations and satellite
footprints at 10:00 UT.

Station name Inv. Lat. MLT
(deg.) (10:00 UT)

ERK (Eureka) 88.7 3.0
BRW (Barrow) 69.7 22.0
KOT (Kotzebue) 64.1 22.0
CMO (College) 64.7 22.9
L9 (LANL 1989-046) 66.9 23.1
DWS (Dawson City) 65.7 23.4
SIT (Sitka) 59.5 24.0
FSI (Fort Simpson) 67.4 0.8
YKC (Yellow Knife) 69.0 1.4
FMC (Fort McMurray) 64.4 1.8
GUA (Guam) 4.5 19.7
PFO (PFO) 39.5 1.7

station. The vertical scale in the keogram shows the north–
south distance in kilometers from the DWS latitudes. An all-
sky image taken by the panchromatic CCD imager was used.
The negative bays were observed at YKC, CMO, DWS, and
FSI, commencing at 09:45, 09:48, 09:48, and 09:47 UT, re-
spectively. The onset of the negative bay at DWS is corre-
lated with the occurrence of an auroral breakup at 09:50 UT,
as displayed in the top panel. At that time, YKC was located
far east of the field of view of the all-sky imager. FSI was
at the eastern edge of the field of view. CMO was in the
field of view. Consecutive auroral breakups occurred at 10:35
and 10:42 UT. The peak of the negative bay occurred at the
second breakup (10:42 UT). However, the auroras appeared
vague because of clouds over the optical station.

We focused on the negative bay and the auroral breakup
associated with the first dotted line (09:53 UT). The longi-
tudinal extent of this breakup event is shown in Fig. 2 by
longitudinal scanning from 900 km west to 900 km east of
DWS along 128 km south of DWS (128 km S), above DWS
(0 km N), and 100 km north of DWS (100 km N). The au-
roral breakup and following poleward expansion occurred in
the sector between 400 km west (W400 km) and 400 km east
(E400 km) from DWS for 128 km S, in the sector W400 km
and E400 km for 0 km N, and in the sector W400 km and
E200 km for 100 km N. The pulsating auroras were activated
to the west and east of the breakup sector. We conclude that
the auroral breakup of the 17 January 1994 event occurred
within the longitudes between 400 km east to 400 km west
from DWS. The localization of the breakup sector can also
be observed in the magnetogram in Fig. 1, where the ampli-
tudes of the negative bay decreased by an order of magnitude
at the adjoining stations of FSI and KOT, located 800 km to
the east and 950 km west, respectively. The amplitudes de-
creased by half at CMO, located 410 km west of DWS. At
BRW (69.7◦ ILAT) and at SIT (59.5◦ ILAT), there was no
clear sign of the negative bay.
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Figure 1. From top to bottom: 2-hour plots from 09:00 to 11:00 UT for 17 January 1994, showing a keogram along geomagnetic meridians
located 150 km west of DWS (Keogram (150 km W)) and theH component of the magnetic field in nT from eight stations in the auroral
zone (BRW, KOT, CMO, DWS, SIT, FSI, YKC, FMC) and dawn-to-dusk component from the polar cap station (ERK). The vertical dotted
lines indicate peaks of the negative bay of DWS at 09:53 and 10:42 UT. The time resolution of the magnetogram is 1 min. The aurora gray
level is plotted to the left in volts, where three pieces of polygonal line conversion was used to make suppressions for high and low voltages.
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Figure 2. Longitudinal scanning of aurora along three different latitudes, 128 km south of DWS (128 km S), above DWS (0 km N), and
100 km north of DWS (100 km N) for the 20 min intervals from 09:40 UT to 10:00 UT. The longitudinal scanning is 1800 km from 900 km
west of DWS and to 900 km east of DWS. The aurora gray level is plotted to the left.
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Figure 3. Same as Fig. 1, but showing a keogram (150 km W), the polar cap convections from ERK (88.7◦ ILAT), the ion spectrogram from
33 eV to 17.3 keV, and the electrons from 38 eV to 22.7 keV. In the keogram, the auroras above 0.305 in the gray level (0 for black and 1
for white) were highlighted in bright white before 09:47 UT (marked by arrows), while the gray level in Fig. 1 is used after 09:47 UT. The
polar cap convection is plotted in the sun–earth coordinates (see text). Vx denotes sunward, Vy denotes duskward. The time resolution is
1 min. The vertical line in the velocity plots denotes the time mark at 10:00 UT. A spin-averaged flux in cm−2 s−1 sr−1 eV−1 obtained in
one∼ 10 s spin with repetition interval of∼ 3 min is plotted. Logarithmic scales for the ion and the electron flux are to the right. Thick red
vertical lines in the ion and the electron spectrogram denote data gaps. The arrow in the fourth panel denotes a step-like increase of the upper
cutoff energies of the plasma-sheet electrons (see text).

2.2 Plasma and auroral observations prior to
the expansion onset

Figure 3 shows, from top to bottom, the keogram
(150 km W) of the auroras, the polar cap convections at
ERK (88.7◦ ILAT), the ion flux spectrogram from 33 eV
to 17.3 keV, and the electron spectrogram from 38 eV to
22.7 keV. The dotted lines also designate the first peak of
the negative bay of DWS at 09:53 UT. Because the keogram
contained pre-onset faint auroras and the following bright ex-
pansion auroras, the keogram prior to and after 09:47 UT, as
marked by arrows, is shown using a different gray level. For
the pre-onset auroras, signals above 0.305 in the gray level (0
for black and 1 for white) were highlighted in bright white,
while for the expansion auroras the gray level in Fig. 1 was
used. To plot the polar cap convections, theH andD compo-
nents of ERK were first converted into sun–earth coordinates
where the offset amplitudes of 48 h (−24 to +24 h) means
were subtracted. The field line vectors in sun–earth coor-
dinates were rotated 90◦ counterclockwise. The convection
flows were assumed to be proportional to the rotated field line
vectors. The anti-sunward convection thus deduced began in

the polar cap at 09:13 UT, 40 min prior to the negative bay
peak. Although the auroral activities began 90 min prior to
the negative bay peak, in association with the increase in the
electron flux below 1 keV at the geosynchronous orbit (not
shown), we focus onT −40 min toT = 0, whereT = 0 de-
notes the time of the negative bay peak. For the 40 min inter-
vals, ions in 1–6 keV were observed after 09:31 UT (see the
third panel of Fig. 3). The arrow in the electron spectrogram
in the fourth panel denotes a step-like increase of the up-
per cutoff energies of plasma-sheet electrons (Thomsen et al.,
2002) from 6 keV at 09:48:45 UT to 10 keV at 09:51:37 UT,
just prior to the peak of negative bay.

In the keogram (150 km W), equatorward propagating
streaks repeated at about 120 s intervals were observed after
09:15 UT equatorward of S100 km (100 km south of DWS).
The propagating velocity was 0.13 km s−1 to the onset lat-
itudes. At higher latitudes, an auroral band appeared after
09:30 UT between N200 km to N300 km (200 to 300 km
north of DWS). Equatorward motions were not observed for
this auroral band.
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Figure 4. Nine all-sky images from 09:22:00 to 09:46:10 UT for 17 January 1994. The auroras above 0.322–0.355 in the gray level were
highlighted. The images labeled A, B, and C were taken at A, B, and C in Fig. 3. East is to the right, west is to the left, north is up, and south
is down. The sequence sampled at∼ 10 s from 09:20:00 to 09:47:50 UT is given in Animation_1 (see Supplement). Note that the gray level
is reversed in the animation (darker colors for the brighter auroras) and were viewed from the ground, anti-parallel to the field lines. East is
to the left and west to the right in the animation.
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Figure 5. Same as Fig. 4 but the highlighted level is 0.350–0.370 in the gray level, slightly higher than that in Fig. 4 (the wave-like structure
in Fig. 4 disappeared because of the weaker radiance).
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2.3 Chronological development of auroras
in an all-sky image

The chronological development of the auroras is displayed
in Figs. 4, 5 and 7 via the all-sky images. Figures 4 and
5 demonstrate pre-onset faint auroras, where auroras above
0.322–0.370 in the gray level were highlighted. The au-
rora images taken at 09:22:00 UT (A), 09:30:00 UT (B), and
09:45:00 UT (C) in Fig. 3 are correspondingly marked A,
B, and C in Figs. 4 and 5. The motion of the aurora in
the animation (Animation_1 in the Supplement) better rep-
resents the pre-onset aurora than a still image. In the ani-
mation, the image gray level is reversed (darker color is for
the brighter aurora), and is viewed anti-parallel to the field
lines. East is to the left and west to the right in the ani-
mation. At about 09:22:31 UT (94-01-17 9:22:31 in Anima-
tion_1 in the Supplement), an auroral band appeared at the
poleward boundary. Simultaneously, an auroral arc propa-
gating southwestward appeared at the center. The arcs pro-
gressively developed and propagated southwestward until
9:42:30 (09:42:30 UT). Such propagations are also shown
in the highlighted images in Fig. 4. The propagating auro-
ral arcs were related to the three streaks propagating toward
the onset latitudes in the keogram shown in Fig. 3. In or-
der to show in detail the southwestward-propagating aurora
arcs, the all-sky image taken at 09:29:22 UT is presented
in Fig. 6. Two arcs were recorded in the image, one at the
zenith and the other equatorward. They represent the wave
front propagating southwestward at an angle of about 10–
20◦ clockwise from the geomagnetic east–west directions.
The westward velocity of the front was∼ 1.5 km s−1. The
equatorward velocities were 0.1–0.2 km s−1. The equator-
ward propagating streaks in the keogram can be regarded as
equatorward-propagating high-m waves (T ∼ 120 s,m ∼ 76).
The high-m waves observed in Animation_1 (see Supple-
ment) until 9:42:30 (09:42:30 UT) again appeared near the
onset latitudes at 9:45:00. The auroral band at higher lat-
itudes (N200–N300 km) showed westward propagations in
Animation_1 (see Supplement) for the interval from 9:26:10
to 9:38:50 at velocities of∼ 0.3 km s−1. The westward ve-
locity may correspond to the magnetic drift of the 7.7 keV
ions alongL = 6.6. It is likely that the auroral band at higher
latitudes is associated with the proton auroras excited by the
1–6 keV ions simultaneously observed by the L9 satellites.
The auroral surge was observed in Animation_1 (see Sup-
plement) after 9:38:50 along the latitudes poleward of the au-
roral band. The poleward surge is demonstrated in the high-
lighted images in Fig. 5, showing the multiple bands at the
poleward boundary.

At the onset latitudes, the activities first appeared in the
western sector at 9:43:10 in Animation_1 (see Supplement)
with the eastward propagations, which were followed by
bead-like rippling (see the image taken at 09:49:42 UT in
Fig. 7 and Animation_2 in the Supplement). The rotating mo-
tions in the bead-like rippling grew into multiple shear layers
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Figure 6. All-sky image taken at 09:29:22 UT overlaid by the lines
of geographic longitudes and latitudes, and the geomagnetic east–
west lines passing the zenith of DWS (0 km) and 50 km south of
DWS (S50 km) by dotted lines. The brighter part of the auroras is
shown in darker colors. The arc rotated clockwise with respect to
the geomagnetic east–west direction.

by 09:51:16 UT (Fig. 7), which displayed a clockwise rota-
tion when viewed along the field lines from above the iono-
sphere (9:48:28–9:50:50 in Animation_2 in the Supplement).
The breakup ends by the scattering of the shear layers, as ob-
served in the image taken at 09:53:48 UT (Fig. 7). Later, a
new surge emerged from the eastern sector, wandering along
the lower latitudes.

2.4 Auroral activations at the equatorward latitudes

Figure 8 shows, from top to bottom, the auroral longitude-
scanning plot along the onset latitudes, theH , D, andZ com-
ponents of DWS for the interval 09:40 to 10:00 UT. Here,H ,
D, andZ point toward magnetic north, magnetic east, and
downward, respectively. A wave-like structure drifting west-
ward was observed again for the intervals 09:43–09:49 UT
and in the range E500–W200 km. The westward phase veloc-
ity tended to increase to about 5.6 km s−1. The high-m waves
lasted until the onset of the bead-like rippling. Pulsating au-
roras (the vertical streaks repeating at∼ 10 s) were activated
further westward. The vertical arrows in the second panel
mark the onsets of the bead-like rippling (09:48:20 UT),
the multiple shear layers (09:52:29 UT), and the end of
the poleward expansion (09:53:45 UT). The first bead-like
rippling started its eastward propagation from E150 km at
09:48:20 UT. The onset longitudes of the subsequent bead-
like rippling moved progressively westward. The propagat-
ing velocities of the bead-like rippling were∼ 3 km s−1. An
eastward drift on the same order of magnitude can also be
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Figure 7. Nine all-sky images from 09:47:49 to 09:54:50 UT for 17 January 1994. The brighter part of the auroras is in white. Geographic
latitudes and longitudes are overlaid on the center image (09:51:59) using grids. Latitudes are plotted every one degree, while the longitudes
are for every two degrees. The satellite footprints calculated by the IGRF, the optical station DWS, and the ground magnetometer station FSI
are overlaid by white circles. East is to the right, west is to the left, north is up, and south is down. The geomagnetic coordinates are rotated
19.6◦ clockwise at DWS with respect to the geographic coordinates. The sequence sampled at∼ 2 s from 09:48:00 to 09:55:01 UT is given
in Animation_2 (see Supplement). Note that images in the animation were viewed anti-parallel to the field lines. East is to the left and west
to the right in the animation.

observed for the interval 09:52:30–09:54:45 UT during the
activation of the multiple shear layers.

2.5 ULF activities on the ground

The magnetic field data in the second through the fourth pan-
els in Fig. 8 show that the first occurrence of the amplitude
decrease ofH and the increase ofZ correlates to the on-
set of the bead-like rippling. The decrease in the amplitude
of D began slightly earlier. High-m waves in the aurora oc-
curring prior to the bead-like rippling were not observed by
the ground magnetometer, most likely because of their short
wavelength (high wave number). A sharp decrease in theD

component occurred at 09:51:17 UT, which correlated to the
beginning of the poleward motion of the equatorward bound-
ary of the aurora. The decrease ofH and the increase ofZ
continued until 09:52:10 UT when theZ component peaked.
Z decreased quickly to the pre-onset level by 09:52:35 UT.
After a short interval, theZ component decreased further be-
low the pre-onset level and returned back to the pre-onset
level (the level before 09:48 UT) by 09:53:52 UT. TheZ am-
plitude kept increasing until 09:54:50 UT. There occurred a

step-like decrease of theH component marked by arrows 1
to 2 and 3 to 4. The first decrease accompanied the positive
peak ofZ (I to II), whereas the second decrease accompanied
the negative peak ofZ (III to IV). The zigzag-path of theD
component is denoted by arrows a to e. From the FFT power
spectral analyses of theH component in Fig. 9, the common
frequencies in the 10–30 mHz range are sheared from high
latitudes (DWS, 65.7◦ N), mid- (PFO, 39.5◦ N) to low lati-
tudes (GUA, 4.5◦ N), and from 19.7 MLT (GUA) to 1.7 MLT
(PFO) in local time. The waveform plot for the 10 min in-
tervals from 09:50 to 10:00 UT in Fig. 10 shows that theH

of the high-latitude station (DWS) was out of phase with re-
spect to theH of GUA. In lower latitudes, the eastern station
(PFO) delayed theH of the western station (GUA) by about
40 s. Figure 11 demonstrates the waveform of theH com-
ponent in the auroral zone from the western station (KOT,
22.0 MLT) to the eastern station (FMC, 1.8 MLT) through
DWS (23.4 MLT) and FSI (0.8 MLT) for the same intervals in
Fig. 10. The main peak at DWS (09:53:20 UT) is marked by a
solid line and moving east, while for the first peak, marked by
a dotted line (09:52:10 UT), the eastern station (DWS) leads
the western station (KOT). For the main peak, there appeared
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Figure 8. From top to bottom: 20 min plots of longitudinal scanning along the equatorward arc (128 km south of DWS), theH component
of the DWS magnetogram, theD component for DWS, and theZ component for DWS. The onset of the bead-like rippling, the onset of the
multiple shear layers, and the end of the poleward expansion in the auroral display are shown by vertical arrows. The arrows labeled 1 to
4 for H , a to e forD, and I to IV for Z in the second, third, and fourth panels, respectively, denote characteristic changes of the field line
vectors associated with the passage of the ionospheric loop current (see text). The aurora gray level is plotted to the left.

a delay of 25 s between DWS and FSI. Such a delay in the
main peak was also observed in the band-passed data in 10–
30 mHz. The amplitudes of the pulse in the band-passed data
were 20, 35, 2, and 2nT for KOT, DWS, FSI, and FMC, re-
spectively. The time delays between longitudinally separated
stations in the auroral zone (Fig. 11) and in lower latitudes
(Fig. 10) may suggest an overall propagation of the mag-
netic pulse toward the east with sub-structures in the auroral
zone. The auroral activities moving westward were found at
the onset latitudes until the onset of the shear layer at about
09:52 UT (Fig. 8). It is likely that the initial negative pulse
(09:52:10 UT, Fig. 11) is associated with this westward auro-
ral motion. The main negative pulse (09:53:20 UT), however,
propagated eastward.

The polarization ellipses in theD − H plane for the inter-
vals of 09:50–10:00 UT are plotted in Fig. 12, viewed along
the field lines. The characteristic field changes marked by the
arrows in Fig. 8 caused a polarization ellipse between gray
circles. The polarization ellipse was rotated clockwise (CW)
in the D − H plane by the change in the field line vectors
from 1 to 2 for theH component and from a to b for theD
component. Subsequently, the polarization reversed to coun-
terclockwise (CCW) by the field line changes 3 to 4 inH and
through c, d and e inD. The characteristic change of the field

lines from a to e inD is marked by arrows beside the polar-
ization ellipses. The ground polarizations in Fig. 12 may be
described by the divergence-free equivalent current systems
in the ionosphere (Fukushima, 1976; Amm et al., 2002).

2.6 Ionospheric currents associated with
the auroral breakup

In the upper-right inset in Fig. 13, the excitation of the
ionospheric current vortex by the guided poloidal waves is
proposed. In this model, the compressional input propagat-
ing eastward locally displaces the outer boundary in both
the transverse and meridian planes and excites toroidal and
poloidal modes, respectively (Allan et al., 1985). It is as-
sumed that the inward compression generates the localized
diamagnetic current (J ) flowing dusk-to-dawn in the equa-
torial plane during the passage of the compressional input at
a velocity (U ). The currents invoke the third harmonic de-
formations of the field lines in the meridian plane (Saka et
al., 2012b). The third harmonic in higher latitudes and fun-
damental harmonic in lower latitudes generate westward and
eastward Hall currents in the ionosphere in higher and lower
latitudes, respectively. Those currents close in the ionosphere
through the meridional currents caused by the eastward
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Figure 9. From top to bottom: the dynamic power spectra ofH for
DWS, GUA, and PFO calculated by the FFT (fast Fourier trans-
form) technique. The spectral power was calculated using 256 data
points (12.8 min) by sliding 1 min.

(westward) deflections of the field lines in the leading edge
and westward (eastward) deflections in the trailing edge of
the compressional input propagating to the east (west). Iono-
spheric currents thus generated by the compressional input
close counterclockwise when viewed from above.

The loop current closing counterclockwise at the iono-
spheric altitudes (not the equivalent current) is illustrated in
the lower left of Fig. 13 by solid and dotted circles. The
arrows overlaid on the loop current (solid circle) represent
equivalent current vectors calculated from the ground effects
of the loop current. Because of the symmetry of the current
loop, only the poleward half is drawn. The upward field-
aligned current is placed at the center of the loop. The current
loop (dotted circle) first grew in the western sector of DWS
in association with the onset of the bead-like rippling, which
correlated to a peak in theH component and an initial rise
in the Z component. Then, a new current loop (dashed cir-
cle) from the east propagated past the DWS sector in associ-
ation with the westward propagation of the first dip in theH

component (the positive peak ofZ). In association with the
eastward propagation of the second dip ofH (the negative
peak ofZ), the current loop (solid loop) approached from
the west and propagated past the DWS sector. Propagation
of the loop correlated to the onset of the poleward expansion
(09:51:10 UT). From theZ component profile, DWS can be
located outside the loop during the westward propagation of
the first current loop, whereas DWS crossed the loop during
the eastward propagation of the second current loop. Prior to
09:51:10 UT, the characteristic changes in the field line vec-
tor exhibit linear polarization on the horizontal plane and a
monotonic increase in theZ component. We interpret this
interval in terms of the growing current intensities of the cur-
rent loop.

0955 1000 

GUA_H 

Fig10 

PFO_H 

DWS_H 

100 nT 

0.4 nT 

1.0 nT 

0950 

Figure 10.From top to bottom: plot of the waveform ofH for DWS,
GUA, and PFO for the intervals from 09:50 UT to 10:00 UT. A pos-
sible delay of the waveform of PFO with respect to GUA is marked
by a dotted line.

We simulated the ground perturbation fields by apply-
ing the Biot–Savart law to the single current loop. Fig-
ure 14 shows a change of field vector (H , D, and Z) of
the ground station associated with the east–west propagat-
ing ionospheric current loop closing counterclockwise. For
the calculations, the radius of the current loop was set to
500 km with the height of the ionosphere at 100 km. The
ground image currents are neglected. To match the observa-
tions, the top panel (a) is for the dashed loop of the currents
in Fig. 13, whereas the second panel (b) is for the solid loop
of the currents propagating eastward. The top panel shows
that the ground station (DWS), approaching from the west of
the loop, observed a negativeH , which peaked when DWS
crossed the center meridian of the current loop.D changed
the polarity from positive to negative as the ground station
moved to the eastern half of the current loop.Z shows a pos-
itive peak when the station crossed the center meridian of the
current loop. Panel (a) compared to panel (b) shows thatD

reversed polarity in association with the change in the prop-
agation direction of the current loop from westward to east-
ward, whereasH was not affected by the propagation direc-
tion. As demonstrated in panel (b),Z changed the amplitudes
from positive to negative (or negative to positive) when the
ground station crossed the edge of the loop. The polarization
ellipse was determined by the propagation direction: CW for
westward propagation and CCW for eastward propagation.
Z amplitudes were determined by the location of the ground
station at the inside or the outside position of the loop. The
observed field vector changes, 1 to 4 forH , a to e forD, and
I to IV for Z, were simulated reasonably well by the propa-
gating current loop closing counterclockwise.
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Figure 11. Same as Fig. 10 but for auroral zone stations of KOT,
DWS, FSI, and FMC. Dotted and solid lines mark the peaks of the
negative amplitudes of DWS at 09:52:10 and 09:53:20 UT, respec-
tively. Peak of the negative pulse at FSI and FMC was at 09:53:45
and 09:53:50 UT, respectively. Time resolution of KOT was 1 s,
while resolutions were 5 s for DWS, FSI, and FMC.
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Figure 12. Hodogram of the polarization ellipses on theD − H

plane for the interval 09:50–10:00 UT. The plot starts from the black
circle and ends at the white circle. The polarization ellipse between
the gray circles was caused by characteristic changes of the field
vectors, 1 to 4 inH , and a to e inD in Fig. 8. The arrows mark the
field line changes associated with a to e inD.
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JHall 
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Figure 13. Schematic illustration of the ionospheric loop currents
closing counterclockwise. Dotted circles illustrate a loop current
growing in intensity. The current loop propagating westward is
shown by a dashed circle. The solid circle represents the current
loop propagating eastward. The dot indicates the ground magne-
tometer station (DWS). The equivalent ionospheric current vectors
associated with the loop current shown by the solid line are over-
laid. Only the vectors in the poleward half are presented. In the
upper-right corner, generation of the ionospheric loop current is il-
lustrated by the field line deformations associated with the compres-
sional input propagating eastward along the outer boundary at the
velocity (U ) (see text). Displaced surface of the compressional in-
put is shown by the dotted curve. The compressional input accom-
panied the diamagnetic currents (J ) flowing eastward. The iono-
spheric loop current propagated eastward, following the eastward
propagation of the compressional input.

3 Discussion

Following the increase of the electron flux< 1 keV at
geosynchronous altitudes observed by the L9 satellite, the
enhancement of anti-sunward convection in the polar cap oc-
curred 40 min prior to the onset of the negative pulse at DWS.
A step-like increase in the upper cutoff energies of plasma-
sheet electrons occurred just before the negative pulse. The
increase in the cutoff energies indicates an increasing con-
vection electric field, which moved the open-close boundary
of electron trajectories closer to the Earth (Thomsen et al.,
2002). The surge of the earthward convection of the plasma-
sheet electrons correlated to the bead-like rippling at the on-
set latitudes. It is supposed that the plasma sheet approached
the poleward boundary of the all-sky field of view and a part
of the plasmas was transported earthward by the convection,
which may have started before the onset of the convection
surge. Auroral bands at higher latitudes may represent the
earthward boundary of the plasma sheet. The high-m waves
propagated southwestward at velocities of 0.13 km s−1 to the
south and 1.5 km s−1 to the west. The high-m waves may be
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Figure 14. Calculated magnetic fields ofH , D, andZ components on the ground produced by the loop current propagating at ionospheric
altitudes (100 km). The amplitudes are relative. The imaging currents of the ground are not included. The radius of the ionospheric current
is assumed to be 500 km. In(A), the ground station is located at 600 km north of the center of the loop;(B) represents the ground station
located 350 km north of the center of the loop. The loop current approached from the east for(A) and from the west for(B) (T = −1), passed
overhead (T = 0), and moved to the west or to the east of the current loop (T = 1). Arrows in the plots (1 to 4 forH , a to e forD, and I to
IV for Z) correspond to the field line changes labeled in Fig. 8.

driven by internal energies (plasma-sheet plasmas) through
drift-bounce resonance (Fenrich and Samson, 1997; Mann,
1998) or by drift resonance (Mager et al., 2009). In the mag-
netogram, both theH and theD components kept increasing
during the intervals when the high-m waves were observed.
Then, a decrease in theH and theD components and an
increase in theZ component began in association with the
onset of the bead-like rippling. The switch of the amplitude
change from increasing to decreasing may represent the onset
of the local activations of the ionospheric vortical currents.

The ionospheric loop current may have peak intensity at
the sector of the maximum plasma pressures introduced in
the conjugate magnetosphere by the energetic ion injection,
which may correspond to the breakup sector on the ground.
The eastward propagation of the main pulse at velocities of
0.8 deg s−1 (or 36 km s−1) (DWS to FSI in Fig. 11) and 30 s
for the transit time of the loop (c to d of theD component
in Fig. 8) gives the diameter of the current loop on the order
of 1080 km. The loop size is consistent with the size of the
aurora. With the propagation directions associated with this
event, the loop current closing counterclockwise explained
the ground observations. This result supports the idea that

the propagating compressional input in the magnetosphere
excited the ionospheric vortical currents. The vortical cur-
rent may accompany the converging electric field in the iono-
sphere as a primary electric field. The secondary electric field
generated by the non-uniform distributions of the conductiv-
ities in the ionosphere may modify the primary electric field
(Glassmeier, 1984). A dense ground network may reveal the
ionospheric current system in greater detail (Pashin et al.,
1982; Glassmeier et al., 1988; Amm et al., 2002).

4 Summary

An isolated and localized auroral breakup event was studied
using all-sky images, ground magnetometer data from optical
station, and plasma data at the conjugate equatorial plane.
The results obtained are as follows:

1. Wave-like structures were observed in the faint aurora
during the pre-onset intervals beginning 30 min prior
to the auroral breakup. The wave-like structures were
characterized by the high-m waves (m ∼ 76,T ∼ 120 s)
propagating equatorward to the onset latitudes.
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2. The poleward expansion of the aurora accompanied the
ground magnetic pulse. The magnetic pulse represents
a propagating ionospheric loop current closing counter-
clockwise. The loop repeated at the Pi2 periodicity si-
multaneously observed in the mid- and low latitudes.

We conclude that the plasma-sheet plasmas transported from
the tail generated the high-m waves by the drift-bounce res-
onance or by the drift resonance, and thereby developed the
current vortices for the auroral breakup.

The Supplement related to this article is available online
at doi:10.5194/angeo-32-1011-2014-supplement.
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