Articles | Volume 31, issue 4
https://doi.org/10.5194/angeo-31-625-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-31-625-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Low level jet intensification by mineral dust aerosols
O. Alizadeh Choobari
Center for Atmospheric Research, University of Canterbury, Christchurch 8140, New Zealand
P. Zawar-Reza
Center for Atmospheric Research, University of Canterbury, Christchurch 8140, New Zealand
A. Sturman
Center for Atmospheric Research, University of Canterbury, Christchurch 8140, New Zealand
Related authors
No articles found.
Dongqi Lin, Marwan Katurji, Laura E. Revell, Basit Khan, and Andrew Sturman
Atmos. Chem. Phys., 23, 14451–14479, https://doi.org/10.5194/acp-23-14451-2023, https://doi.org/10.5194/acp-23-14451-2023, 2023
Short summary
Short summary
Accurate fog forecasting is difficult in a complex environment. Spatial variations in soil moisture could impact fog. Here, we carried out fog simulations with spatially different soil moisture in complex topography. The soil moisture was calculated using satellite observations. The results show that the spatial variations in soil moisture do not have a significant impact on where fog occurs but do impact how long fog lasts. This finding could improve fog forecasts in the future.
Benjamin Schumacher, Marwan Katurji, Jiawei Zhang, Peyman Zawar-Reza, Benjamin Adams, and Matthias Zeeman
Atmos. Meas. Tech., 15, 5681–5700, https://doi.org/10.5194/amt-15-5681-2022, https://doi.org/10.5194/amt-15-5681-2022, 2022
Short summary
Short summary
This investigation presents adaptive thermal image velocimetry (A-TIV), a newly developed algorithm to spatially measure near-surface atmospheric velocities using an infrared camera mounted on uncrewed aerial vehicles. A validation and accuracy assessment of the retrieved velocity fields shows the successful application of the algorithm over short-cut grass and turf surfaces in dry conditions. This provides new opportunities for atmospheric scientists to study surface–atmosphere interactions.
Hanna Meyer, Marwan Katurji, Florian Detsch, Fraser Morgan, Thomas Nauss, Pierre Roudier, and Peyman Zawar-Reza
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-215, https://doi.org/10.5194/essd-2019-215, 2019
Preprint withdrawn
Short summary
Short summary
Air temperature is an important baseline parameter for terrestrial Antarctica in the context of patterns and processes in climatology, hydrology or ecology. In this paper, we present AntAir, a new dataset of gridded air temperatures in 1 km spatial and daily temporal resolution that is available since 2003. AntAir was created by modelling daily air temperature from MODIS satellite-based land surface temperature using machine learning algorithms and measurements from 70 weather stations.