Articles | Volume 31, issue 2
https://doi.org/10.5194/angeo-31-377-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-31-377-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Observations of poleward-propagating large-scale traveling ionospheric disturbances in southern China
F. Ding
CAS Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
W. Wan
CAS Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
B. Ning
CAS Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
B. Zhao
CAS Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Q. Li
National Earthquake Infrastructure Service, Beijing, China
Y. Wang
National Center for Space Weather, China Meteorological Administration, Beijing, China
L. Hu
CAS Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
R. Zhang
National Earthquake Infrastructure Service, Beijing, China
B. Xiong
CAS Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Related authors
Feng Ding, Tian Mao, Lianhuan Hu, Baiqi Ning, Weixing Wan, and Yungang Wang
Ann. Geophys., 34, 1045–1051, https://doi.org/10.5194/angeo-34-1045-2016, https://doi.org/10.5194/angeo-34-1045-2016, 2016
Short summary
Short summary
Two traveling ionospheric disturbances (TIDs) were observed by the GPS network in Asia following the large meteorite blast over Chelyabinsk, Russia. No TIDs propagating in a global range were found. Features of TIDs were compared with those excited by early nuclear explosion tests. It is inferred from our analysis that the energy release of the Chelyabinsk meteorite blast may not be large enough to excite such ionospheric disturbances in a global range as some nuclear explosions have done.
Wen Yi, Xianghui Xue, Iain M. Reid, Damian J. Murphy, Chris M. Hall, Masaki Tsutsumi, Baiqi Ning, Guozhu Li, Robert A. Vincent, Jinsong Chen, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Chem. Phys., 19, 7567–7581, https://doi.org/10.5194/acp-19-7567-2019, https://doi.org/10.5194/acp-19-7567-2019, 2019
Short summary
Short summary
The seasonal variations in the mesopause densities, especially with regard to its global structure, are still unclear. In this study, we report the climatology of the mesopause density estimated using multiyear observations from nine meteor radars from Arctic to Antarctic latitudes. The results reveal a significant AO and SAO in mesopause density, an asymmetry between the two polar regions and evidence of intraseasonal oscillations (ISOs), perhaps associated with the ISOs of the troposphere.
Bingkun Yu, Xianghui Xue, Xin'an Yue, Chengyun Yang, Chao Yu, Xiankang Dou, Baiqi Ning, and Lianhuan Hu
Atmos. Chem. Phys., 19, 4139–4151, https://doi.org/10.5194/acp-19-4139-2019, https://doi.org/10.5194/acp-19-4139-2019, 2019
Short summary
Short summary
It reports the long-term climatology of the intensity of Es layers from COSMIC satellites. The global Es maps present high-resolution spatial distributions and seasonal dependence. It mainly occurs at mid-latitudes and polar regions. Based on wind shear theory, simulation results indicate the convergence of vertical ion velocity could partially explain the Es seasonal dependence and some disagreements between observations and simulations suggest other processes play roles in the Es variations.
Feng Ding, Tian Mao, Lianhuan Hu, Baiqi Ning, Weixing Wan, and Yungang Wang
Ann. Geophys., 34, 1045–1051, https://doi.org/10.5194/angeo-34-1045-2016, https://doi.org/10.5194/angeo-34-1045-2016, 2016
Short summary
Short summary
Two traveling ionospheric disturbances (TIDs) were observed by the GPS network in Asia following the large meteorite blast over Chelyabinsk, Russia. No TIDs propagating in a global range were found. Features of TIDs were compared with those excited by early nuclear explosion tests. It is inferred from our analysis that the energy release of the Chelyabinsk meteorite blast may not be large enough to excite such ionospheric disturbances in a global range as some nuclear explosions have done.
Y. Zhang, W. Wan, G. Li, L. Liu, L. Hu, and B. Ning
Ann. Geophys., 33, 1421–1430, https://doi.org/10.5194/angeo-33-1421-2015, https://doi.org/10.5194/angeo-33-1421-2015, 2015
Y. Chen, L. Liu, H. Le, W. Wan, and H. Zhang
Ann. Geophys., 33, 711–718, https://doi.org/10.5194/angeo-33-711-2015, https://doi.org/10.5194/angeo-33-711-2015, 2015
P. Prikryl, R. Ghoddousi-Fard, L. Spogli, C. N. Mitchell, G. Li, B. Ning, P. J. Cilliers, V. Sreeja, M. Aquino, M. Terkildsen, P. T. Jayachandran, Y. Jiao, Y. T. Morton, J. M. Ruohoniemi, E. G. Thomas, Y. Zhang, A. T. Weatherwax, L. Alfonsi, G. De Franceschi, and V. Romano
Ann. Geophys., 33, 657–670, https://doi.org/10.5194/angeo-33-657-2015, https://doi.org/10.5194/angeo-33-657-2015, 2015
Short summary
Short summary
A series of interplanetary coronal mass ejections in the period 7–17 March 2012 caused geomagnetic storms that strongly affected the high-latitude ionosphere in the Northern and Southern Hemisphere. Interhemispheric comparison of GPS phase scintillation reveals commonalities as well as asymmetries, as a consequence of the coupling between the solar wind and magnetosphere. The interhemispheric asymmetries are primarily caused by the dawn-dusk component of the interplanetary magnetic field.
L. Hu, B. Ning, L. Liu, B. Zhao, G. Li, B. Wu, Z. Huang, X. Hao, S. Chang, and Z. Wu
Ann. Geophys., 32, 1311–1319, https://doi.org/10.5194/angeo-32-1311-2014, https://doi.org/10.5194/angeo-32-1311-2014, 2014
Q. Li, J. Xu, J. Yue, X. Liu, W. Yuan, B. Ning, S. Guan, and J. P. Younger
Ann. Geophys., 31, 409–418, https://doi.org/10.5194/angeo-31-409-2013, https://doi.org/10.5194/angeo-31-409-2013, 2013