Anti-sunward high-speed jets in the subsolar magnetosheath
Abstract. Using 2008–2011 data from the five Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft in Earth's subsolar magnetosheath, we study high-speed jets identified as intervals when the anti-sunward component of the dynamic pressure in the subsolar magnetosheath exceeds half of its upstream solar wind value. Based on our comprehensive data set of 2859 high-speed jets, we obtain the following statistical results on jet properties and favorable conditions: high-speed jets occur predominantly downstream of the quasi-parallel bow shock, i.e., when interplanetary magnetic field cone angles are low. Apart from that, jet occurrence is only very weakly dependent (if at all) on other upstream conditions or solar wind variability. Typical durations and recurrence times of high-speed jets are on the order of tens of seconds and a few minutes, respectively. Relative to the ambient magnetosheath, high-speed jets exhibit higher speed, density and magnetic field intensity, but lower and more isotropic temperatures. They are almost always super-Alfvénic, often even super-magnetosonic, and typically feature 6.5 times as much dynamic pressure and twice as much total pressure in anti-sunward direction as the surrounding plasma does. Consequently, they are likely to have significant effects on the magnetosphere and ionosphere if they impinge on the magnetopause.