Articles | Volume 31, issue 2
https://doi.org/10.5194/angeo-31-163-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-31-163-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
GPS observations of medium-scale traveling ionospheric disturbances over Europe
Y. Otsuka
Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601, Japan
K. Suzuki
Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601, Japan
S. Nakagawa
Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601, Japan
M. Nishioka
Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601, Japan
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
K. Shiokawa
Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601, Japan
T. Tsugawa
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
Related authors
T. Ishida, Y. Ogawa, A. Kadokura, K. Hosokawa, and Y. Otsuka
Ann. Geophys., 33, 525–530, https://doi.org/10.5194/angeo-33-525-2015, https://doi.org/10.5194/angeo-33-525-2015, 2015
Short summary
Short summary
We studied the localized plasma density enhancements called blobs, which are often produced in the high-latitude ionosphere by the transportation process of plasma or particle precipitations. This subject is important because such structures affect radio wave propagation and can cause scintillation of GNSS signals in the deformation process. This paper is the first report of direct observations of blob deformation during a substorm.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Viswanathan Lakshmi Narayanan, Satonori Nozawa, Shin-Ichiro Oyama, Ingrid Mann, Kazuo Shiokawa, Yuichi Otsuka, Norihito Saito, Satoshi Wada, Takuya D. Kawahara, and Toru Takahashi
Atmos. Chem. Phys., 21, 2343–2361, https://doi.org/10.5194/acp-21-2343-2021, https://doi.org/10.5194/acp-21-2343-2021, 2021
Short summary
Short summary
In the past, additional sodium peaks occurring above the main sodium layer of the upper mesosphere were discussed. Here, formation of an additional sodium peak below the main sodium layer peak is discussed in detail. The event coincided with passage of multiple mesospheric bores, which are step-like disturbances occurring in the upper mesosphere. Hence, this work highlights the importance of such mesospheric bores in causing significant changes to the minor species concentration in a short time.
Septi Perwitasari, Takuji Nakamura, Masaru Kogure, Yoshihiro Tomikawa, Mitsumu K. Ejiri, and Kazuo Shiokawa
Ann. Geophys., 36, 1597–1605, https://doi.org/10.5194/angeo-36-1597-2018, https://doi.org/10.5194/angeo-36-1597-2018, 2018
Short summary
Short summary
We have developed a user-friendly program that can efficiently deal with extensive amounts of airglow data. We have applied this new program to airglow data obtained at different latitudes in polar, midlatitude, and equatorial regions and demonstrated distinct differences in atmospheric gravity wave (AGW) propagation characteristics and energy distribution. We aim to encourage other AGW research groups to use the program and do comparisons to reveal AGW characteristics on a more global scale.
Heqiucen Xu, Kazuo Shiokawa, and Dennis Frühauff
Ann. Geophys., 35, 1131–1142, https://doi.org/10.5194/angeo-35-1131-2017, https://doi.org/10.5194/angeo-35-1131-2017, 2017
Short summary
Short summary
In this study, we statistically analyzed severe magnetic fluctuations in the nightside near-Earth plasma sheet. For the first time, we showed the occurrence rates of these fluctuations. The superposed epoch analysis also indicated that the flow speed increases before the severe magnetic fluctuations. We also discussed how both the inside-out and outside-in substorm models can be used to explain these observed results.
T. Ishida, Y. Ogawa, A. Kadokura, K. Hosokawa, and Y. Otsuka
Ann. Geophys., 33, 525–530, https://doi.org/10.5194/angeo-33-525-2015, https://doi.org/10.5194/angeo-33-525-2015, 2015
Short summary
Short summary
We studied the localized plasma density enhancements called blobs, which are often produced in the high-latitude ionosphere by the transportation process of plasma or particle precipitations. This subject is important because such structures affect radio wave propagation and can cause scintillation of GNSS signals in the deformation process. This paper is the first report of direct observations of blob deformation during a substorm.
J. A. Wanliss, K. Shiokawa, and K. Yumoto
Nonlin. Processes Geophys., 21, 347–356, https://doi.org/10.5194/npg-21-347-2014, https://doi.org/10.5194/npg-21-347-2014, 2014
R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Takahei, T. Nakai, H. Miyahara, and K. Shiokawa
Ann. Geophys., 31, 1543–1548, https://doi.org/10.5194/angeo-31-1543-2013, https://doi.org/10.5194/angeo-31-1543-2013, 2013
M. Pezzopane, E. Zuccheretti, P. Abadi, A. J. de Abreu, R. de Jesus, P. R. Fagundes, P. Supnithi, S. Rungraengwajiake, T. Nagatsuma, T. Tsugawa, M. A. Cabrera, and R. G. Ezquer
Ann. Geophys., 31, 153–162, https://doi.org/10.5194/angeo-31-153-2013, https://doi.org/10.5194/angeo-31-153-2013, 2013