Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
  • CiteScore value: 2.9 CiteScore
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 31, issue 8
Ann. Geophys., 31, 1315–1331, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 31, 1315–1331, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Regular paper 05 Aug 2013

Regular paper | 05 Aug 2013

The complete spectrum of the equatorial electrojet related to solar tides: CHAMP observations

H. Lühr1 and C. Manoj2 H. Lühr and C. Manoj
  • 1GFZ, German Research Centre for Geosciences, Potsdam, Germany
  • 2National Geophysical Data Center, NOAA, Boulder, Colorado, USA

Abstract. Based on 10 yr of magnetic field measurements by the CHAMP satellite we draw a detailed picture of the equatorial electrojet (EEJ) tidal variations. For the first time the complete EEJ spectrum related to average solar tides has been compiled. A large fraction of the resulting spectrum is related to the switch on/off of the EEJ between day and night. This effect has carefully been considered when interpreting the results. As expected, largest amplitudes are caused by the migrating tides representing the mean diurnal variation. Higher harmonics of the daily variations show a 1/f fall-off in amplitude. Such a spectrum is required to represent the vanishing of the EEJ current at night. The migrating tidal signal exhibits a distinct annual variation with large amplitudes during December solstice and equinox seasons but a depression by a factor of 1.7 around June–July. A rich spectrum of non-migrating tidal effects is deduced. Most prominent is the four-peaked longitudinal pattern around August. Almost 90% of the structure can be attributed to the diurnal eastward-propagating tide DE3. In addition the westward-propagating DW5 is contributing to wave-4. The second-largest non-migrating tide is the semi-diurnal SW4 around December solstice. It causes a wave-2 feature in satellite observations. The three-peaked longitudinal pattern, often quoted as typical for the December season, is significantly weaker. During the months around May–June a prominent wave-1 feature appears. To first order it represents a stationary planetary wave SPW1 which causes an intensification of the EEJ at western longitudes beyond 60° W and a weakening over Africa/India. In addition, a prominent ter-diurnal non-migrating tide TW4 causes the EEJ to peak later, at hours past 14:00 local time in the western sector. A particularly interesting non-migrating tide is the semi-diurnal SW3. It causes largest EEJ amplitudes from October through December. This tidal component shows a strong dependence on solar flux level with increasing amplitudes towards solar maximum. We are not aware of any previous studies mentioning this behaviour of SW3. The main focus of this study is to present the observed EEJ spectrum and its relation to tidal driving. For several of the identified spectral components we cannot offer convincing explanations for the generation mechanisms.

Publications Copernicus