Articles | Volume 29, issue 4
https://doi.org/10.5194/angeo-29-639-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/angeo-29-639-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Exploring planetary magnetic environments using magnetically unclean spacecraft: a systems approach to VEX MAG data analysis
S. A. Pope
Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
T. L. Zhang
Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, 230026, China
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria
M. A. Balikhin
Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
M. Delva
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria
L. Hvizdos
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice, Slovakia
K. Kudela
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice, Slovakia
A. P. Dimmock
Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
Viewed
Total article views: 2,732 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,521 | 1,114 | 97 | 2,732 | 92 | 72 |
- HTML: 1,521
- PDF: 1,114
- XML: 97
- Total: 2,732
- BibTeX: 92
- EndNote: 72
Cited
30 citations as recorded by crossref.
- Effect of data gaps: comparison of different spectral analysis methods C. Munteanu et al. 10.5194/angeo-34-437-2016
- Structure of a Quasi-parallel Shock Front M. Balikhin et al. 10.3847/1538-4357/ad0b71
- Along-track Calibration of the Zhurong Rover Magnetometer H. Luo et al. 10.1007/s11430-023-1213-1
- Pattern recognition in time series for space missions: A rosetta magnetic field case study K. Ostaszewski et al. 10.1016/j.actaastro.2019.11.037
- Spatial scales of the magnetic ramp at the Venusian bow shock A. Dimmock et al. 10.5194/angeo-29-2081-2011
- A study of ionopause perturbation and associated boundary wave formation at Venus G. Chong et al. 10.1002/2016JA023769
- Magnetic gradiometry using frequency-domain filtering J. Ream et al. 10.1088/1361-6501/ac2e2e
- Identification and Removal of Reaction Wheel Interference From In‐Situ Magnetic Field Data Using Multichannel Singular Spectrum Analysis M. Finley et al. 10.1029/2022JA031020
- Fluxgate Magnetometer Offset Vector Determination Using Current Sheets in the Solar Wind G. Wang & Z. Pan 10.3847/1538-4357/ac3d8f
- A Statistical Study of Ionospheric Boundary Wave Formation at Venus G. Chong et al. 10.1029/2018JA025644
- In situ observations of ions and magnetic field around Phobos: the mass spectrum analyzer (MSA) for the Martian Moons eXploration (MMX) mission S. Yokota et al. 10.1186/s40623-021-01452-x
- Correction of Spacecraft Magnetic Field Noise: Initial Korean Pathfinder Lunar Orbiter MAGnetometer Observation in Solar Wind J. Lee et al. 10.3390/s23239428
- Validation of single spacecraft methods for collisionless shock velocity estimation S. Giagkiozis et al. 10.1002/2017JA024502
- A New Method to Calculate the Fluxgate Magnetometer Offset in the Interplanetary Magnetic Field: 1. Using Alfvén Waves G. Wang & Z. Pan 10.1029/2020JA028893
- 祝融号火星表面磁场探测仪的沿轨标定 浩. 罗 et al. 10.1360/N072023-0151
- Automatic parameterization for magnetometer zero offset determination M. Pudney et al. 10.5194/gi-1-103-2012
- Foreshock Bubbles at Venus: Hybrid Simulations and VEX Observations N. Omidi et al. 10.1029/2019JA027056
- High-precision Calibration of the Fluxgate Magnetometer Offset Vector in the Terrestrial Magnetosheath G. Wang 10.3847/1538-4357/ac5907
- Algorithms for accurate LEO geomagnetic measurements with satellite-mounted magnetometers L. Allen et al. 10.1109/TAES.2014.130530
- Science objectives of the magnetic field experiment onboard Aditya-L1 spacecraft V. Yadav et al. 10.1016/j.asr.2017.11.008
- Wavelet-Adaptive Interference Cancellation for Underdetermined Platforms: Enhancing Boomless Magnetic Field Measurements on Compact Spacecraft A. Hoffmann & M. Moldwin 10.1109/TAES.2023.3315220
- The Response of the Venusian Plasma Environment to the Passage of an ICME: Hybrid Simulation Results and Venus Express Observations A. Dimmock et al. 10.1029/2017JA024852
- In-flight calibration of the magnetometer on the Mars orbiter of Tianwen-1 Z. Zou et al. 10.1007/s11431-023-2401-2
- Calibration of the Zero Offset of the Fluxgate Magnetometer on Board the Tianwen‐1 Orbiter in the Martian Magnetosheath G. Wang et al. 10.1029/2023JA031757
- Separation of Spacecraft Noise From Geomagnetic Field Observations Through Density‐Based Cluster Analysis and Compressive Sensing A. Hoffmann & M. Moldwin 10.1029/2022JA030757
- The fluxgate magnetometer of the Low Orbit Pearl Satellites (LOPS): overview of in-flight performance and initial results Y. Zhu et al. 10.5194/gi-10-227-2021
- Maximum-variance gradiometer technique for removal of spacecraft-generated disturbances from magnetic field data O. Constantinescu et al. 10.5194/gi-9-451-2020
- Signal and Noise Separation From Satellite Magnetic Field Data Through Independent Component Analysis: Prospect of Magnetic Measurements Without Boom and Noise Source Information S. Imajo et al. 10.1029/2020JA028790
- A New Method of Fluxgate Magnetometer Offset Vector Determination in the Solar Wind Using Any Magnetic Field Variations G. Wang 10.3847/1538-4357/ac822c
- A New Method to Calculate the Fluxgate Magnetometer Offset in the Interplanetary Magnetic Field: 2. Using Mirror Mode Structures G. Wang & Z. Pan 10.1029/2021JA029781
Latest update: 21 Nov 2024
Special issue