Articles | Volume 24, issue 3
https://doi.org/10.5194/angeo-24-989-2006
© Author(s) 2006. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-24-989-2006
© Author(s) 2006. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Geomagnetic Dst index forecast based on IMF data only
G. Pallocchia
Istituto di Fisica dello Spazio Interplanetario, Istituto Nazionale di Astrofisica, Rome, Italy
E. Amata
Istituto di Fisica dello Spazio Interplanetario, Istituto Nazionale di Astrofisica, Rome, Italy
G. Consolini
Istituto di Fisica dello Spazio Interplanetario, Istituto Nazionale di Astrofisica, Rome, Italy
M. F. Marcucci
Istituto di Fisica dello Spazio Interplanetario, Istituto Nazionale di Astrofisica, Rome, Italy
I. Bertello
Istituto di Fisica dello Spazio Interplanetario, Istituto Nazionale di Astrofisica, Rome, Italy
Viewed
Total article views: 1,852 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
894 | 889 | 69 | 1,852 | 79 | 72 |
- HTML: 894
- PDF: 889
- XML: 69
- Total: 1,852
- BibTeX: 79
- EndNote: 72
Cited
55 citations as recorded by crossref.
- DeepMAD: Deep Learning for Magnetic Anomaly Detection and Denoising X. Xu et al. 10.1109/ACCESS.2020.3006795
- Prediction of the Dst Index and Analysis of Its Dependence on Solar Wind Parameters Using Neural Network A. Lethy et al. 10.1029/2018SW001863
- A machine learning approach for automated ULF wave recognition G. Balasis et al. 10.1051/swsc/2019010
- Role of the variable solar wind in the dynamics of small-scale magnetosheath structures L. Rakhmanova et al. 10.3389/fspas.2023.1121230
- Recognition of geomagnetic storms from time series of matrix observations with the muon hodoscope URAGAN using neural networks of deep learning V. Getmanov et al. 10.12737/stp-101202411
- Exploring Three Recurrent Neural Network Architectures for Geomagnetic Predictions P. Wintoft & M. Wik 10.3389/fspas.2021.664483
- A study on precursors leading to geomagnetic storms using artificial neural network G. SINGH & A. SINGH 10.1007/s12040-016-0702-1
- Recognition of Geomagnetic Storm Based on Neural Network Model Estimates of Dst Indices A. Belov et al. 10.1134/S106423072201004X
- Forecasting of global data‐binning parameters for high‐resolution empirical geomagnetic field models M. Sitnov et al. 10.1029/2012SW000783
- AE index forecast at different time scales through an ANN algorithm based on L1 IMF and plasma measurements G. Pallocchia et al. 10.1016/j.jastp.2007.08.038
- Statistical Prediction of Dst Index by Solar Wind Data and <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>-Distributions P. Qin & R. Nishii 10.1109/TPS.2015.2485661
- Analysis of geomagnetic hourly ranges D. Danskin & S. Lotz 10.1002/2015SW001184
- The Use of Coupling Functions in the Forecasting of the Dst-Index Amplitude with Adaptive Methods I. Myagkova et al. 10.1134/S0016793220060092
- Measuring Information Coupling between the Solar Wind and the Magnetosphere–Ionosphere System M. Stumpo et al. 10.3390/e22030276
- Evolution of Dynamical Complexities in Geospace as Captured by Dst Over Four Solar Cycles 1964–2008. S. Ogunjo et al. 10.1029/2020JA027873
- On the existence of a long range correlation in the Geomagnetic Disturbance storm time (Dst) index A. Banerjee et al. 10.1007/s10509-011-0836-1
- Geomagnetic storm forecasting service StormFocus: 5 years online T. Podladchikova et al. 10.1051/swsc/2018017
- Comparison of Dst forecast models for intense geomagnetic storms E. Ji et al. 10.1029/2011JA016872
- Analysis of the first four moderate geomagnetic storms of the year 2015 E. Eroglu 10.1007/s12517-021-08816-3
- Probabilistic forecasting of the disturbance storm time index: An autoregressive Gaussian process approach M. Chandorkar et al. 10.1002/2017SW001627
- Geomagnetic Storm Prediction Based on the Neural Network Digital Processing of Joint Observations of the URAGAN Muon Hodoscope and Neutron Monitor Stations V. Getmanov et al. 10.1134/S0016793222040089
- Probabilistic Geomagnetic Storm Forecasting via Deep Learning A. Tasistro‐Hart et al. 10.1029/2020JA028228
- An empirical model of the Earth’s bow shock based on an artificial neural network G. Pallocchia & L. Trenchi 10.1016/j.pss.2021.105196
- A cellular automata-based model of Earth's magnetosphere in relation withDstindex A. Banerjee et al. 10.1002/2014SW001138
- Dst Index Forecast Based on Ground‐Level Data Aided by Bio‐Inspired Algorithms J. Lazzús et al. 10.1029/2019SW002215
- The use of sequential recurrent neural filters in forecasting the Dst index for the strong magnetic storm of autumn 2003 L. Ouarbya et al. 10.1016/j.aml.2011.12.002
- Improving Disturbance Storm Time Index Prediction Using Linear and Nonlinear Parametric Models: A Comprehensive Analysis M. Jawad et al. 10.1109/TPS.2018.2887202
- The (un)predictable magnetosphere: the role of the internal dynamics T. Alberti 10.1017/S0022377822000137
- Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks J. Uwamahoro et al. 10.5194/angeo-30-963-2012
- Composite Model for Predicting SYM‐H Index Y. Ji et al. 10.1029/2022EA002560
- Recognition of geomagnetic storms from time series of matrix observations with the muon hodoscope URAGAN using neural networks of deep learning V. Getmanov et al. 10.12737/szf-101202411
- Forecasting SYM‐H Index: A Comparison Between Long Short‐Term Memory and Convolutional Neural Networks F. Siciliano et al. 10.1029/2020SW002589
- Geomagnetic storm forecasting from solar coronal holes S. Nitti et al. 10.1093/mnras/stac3533
- Prominence of the training data preparation in geomagnetic storm prediction using deep neural networks M. Cristoforetti et al. 10.1038/s41598-022-11721-8
- Models of Solar Wind Structures and Their Interaction with the Earth’s Space Environment J. Watermann et al. 10.1007/s11214-009-9494-9
- Prediction of SYM-H index by NARX neural network from IMF and solar wind data L. Cai et al. 10.1007/s11431-009-0296-9
- Potential role of energetic particle observations in geomagnetic storm forecasting D. Ameri & E. Valtonen 10.1016/j.asr.2019.05.012
- A Method for Forecasting Geomagnetic Storms Based on Deep Learning Neural Networks Using Time Series of Matrix Observations of the Uragan Muon Hodoscope V. Getmanov et al. 10.1134/S0016793224600644
- Forecast of the daily geomagnetic perturbations M. Stodilka 10.15407/knit2010.05.046
- Zonal geomagnetic indices estimation of the two super geomagnetic activities of 2015 with the artificial neural networks E. Eroglu 10.1016/j.asr.2021.04.036
- Using artificial neural networks in the investigation of four moderate geomagnetic storms (mGSs) that occurred in 2015 F. Basciftci 10.1016/j.asr.2023.01.001
- Comparison of the Efficiency of Machine Learning Methods in Studying the Importance of Input Features in the Problem of Forecasting the Dst Geomagnetic Index R. Vladimirov et al. 10.31857/S0016794022100224
- Comparison of the Efficiency of Machine Learning Methods in Studying the Importance of Input Features in the Problem of Forecasting the Dst Geomagnetic Index R. Vladimirov et al. 10.1134/S0016793222600795
- Empirical modeling of the storm time geomagnetic indices: a comparison between the local K and global Kp indices J. Uwamahoro & J. Habarulema 10.1186/1880-5981-66-95
- Space Weather Effects Produced by the Ring Current Particles N. Ganushkina et al. 10.1007/s11214-017-0412-2
- Comparison between three algorithms for Dst predictions over the 2003–2005 period E. Amata et al. 10.1016/j.jastp.2007.08.041
- Analysis of magnetic data of ground station network during strong magnetic storms O. Mandrikova et al. 10.1051/e3sconf/20172002008
- Dynamic Time Warping as a New Evaluation for Dst Forecast With Machine Learning B. Laperre et al. 10.3389/fspas.2020.00039
- Forbush Decreases and Geomagnetic Storms During a Highly Disturbed Solar and Interplanetary Period, 4–10 September 2017 B. Badruddin et al. 10.1029/2018SW001941
- The Challenge of Machine Learning in Space Weather: Nowcasting and Forecasting E. Camporeale 10.1029/2018SW002061
- Forecasting the Dst index using a swarm‐optimized neural network J. Lazzús et al. 10.1002/2017SW001608
- A comparative study of ionospheric IRIEup and ISP assimilative models during some intense and severe geomagnetic storms M. Pietrella et al. 10.1016/j.asr.2018.02.026
- Prediction of the Dst Geomagnetic Index Using Adaptive Methods I. Myagkova et al. 10.3103/S1068373921030031
- The Prediction of the Dst-Index Based on Machine Learning Methods A. Efitorov et al. 10.1134/S0010952518060035
- Signatures of discrete scale invariance inDsttime series G. Balasis et al. 10.1029/2011GL048019
Latest update: 13 Dec 2024