Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 1.490
IF 5-year value: 1.445
IF 5-year
CiteScore value: 2.9
SNIP value: 0.789
IPP value: 1.48
SJR value: 0.74
Scimago H <br class='widget-line-break'>index value: 88
Scimago H
h5-index value: 21
Volume 24, issue 11
Ann. Geophys., 24, 3099–3113, 2006
© Author(s) 2006. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 24, 3099–3113, 2006
© Author(s) 2006. This work is distributed under
the Creative Commons Attribution 3.0 License.

  22 Nov 2006

22 Nov 2006

Implications of unusual pitch-angle distributions observed by ISEE-1 and 2

C. A. Zuluaga, E. S. Beiser, J. Chen, and T. A. Fritz C. A. Zuluaga et al.
  • Center for Space Physics, Boston University, Boston MA, USA

Abstract. Unusual energetic particle pitch angle distributions (PADs) were observed by the ISEE-1 and 2 satellites at 3 h MLT and a radial distance of about 10–15 RE during the time period of 07:00-14:00 UT on 3 March 1979. The ISEE-1 satellite obtained complete 3-D distributions of energetic proton and electron fluxes as a function of energy, while ISEE-2 was configured to provide higher time resolution but less angular resolution than ISEE-1. The ISEE-1 observed a butterfly PAD (a minimum in the 90° PA particle flux) for a period of about 2 h (10:00–12:00 UT) for the electrons, and 3 h (09:00–12:00 UT) for the protons over an energy range of 22.5–189 keV (E1–E4) for the electrons and 24–142 keV (P1–P4) for the protons. The small pitch angle (15°, 30°) charged particles (electrons and protons) are seen to behave collectively in all four energy ranges. The relative differences in electron fluxes between 15° PA and 90° PA are more significant for higher energy channels during the butterfly PAD period. Three different types of electron PADs (butterfly, isotropic, and peaked-at-90°) were observed at the same location and time as a function of energy for a short period of time before 10:00 UT. Electron butterfly distributions were also observed by the ISEE-2 for about 1.5 h over 28–62 keV (E2–E4), although less well resolved than ISEE-1. Unlike the ISEE-1, no butterfly distributions were resolved in the ISEE-2 proton PADs due to less angular resolution. The measured drift effects by ISEE-1 suggest that the detected protons were much closer to the particle source than the electrons along their trajectories, and thus ruled out a nightside source within 18:00 MLT to 03:00 MLT. Compared to 07:30 UT, the charged particle fluxes measured by ISEE-1 were enhanced by up to three orders of magnitude during the period 08:30–12:00 UT. From 09:10:00 UT to 11:50 UT, the geomagnetic conditions were quiet (AE<100 nT), the LANL geosynchronous satellites observed no substorms, and the local magnetic field measured by ISEE-1 was almost constant, while the small PA charged particle (both electron and proton) fluxes measured by ISEE-1 increased gradually, which implies a particle source other than the substorm source. Based on detailed particle trajectory tracings in a realistic geomagnetic field model, the 50–200 keV protons with small PA at 10:00 UT ISEE-1 location on 3 March 1979 were passing through the northern high-altitude and high-latitude morningside region where the cusp should be located under a dawnward IMF component condition, while those protons with large PA may connect to the high-latitude morningside magnetopause. It is possible that the cusp source is responsible for the all particles observed during the event.

Publications Copernicus