Articles | Volume 22, issue 2
01 Jan 2004
 | 01 Jan 2004

Modelling of the ring current in Saturn's magnetosphere

G. Giampieri and M. K. Dougherty

Abstract. The existence of a ring current inside Saturn's magnetosphere was first suggested by Smith et al. (1980) and Ness et al. (1981, 1982), in order to explain various features in the magnetic field observations from the Pioneer 11 and Voyager 1 and 2 spacecraft. Connerney et al. (1983) formalized the equatorial current model, based on previous modelling work of Jupiter's current sheet and estimated its parameters from the two Voyager data sets. Here, we investigate the model further, by reconsidering the data from the two Voyager spacecraft, as well as including the Pioneer 11 flyby data set.

First, we obtain, in closed form, an analytic expression for the magnetic field produced by the ring current. We then fit the model to the external field, that is the difference between the observed field and the internal magnetic field, considering all the available data. In general, through our global fit we obtain more accurate parameters, compared to previous models. We point out differences between the model's parameters for the three flybys, and also investigate possible deviations from the axial and planar symmetries assumed in the model. We conclude that an accurate modelling of the Saturnian disk current will require taking into account both of the temporal variations related to the condition of the magnetosphere, as well as non-axisymmetric contributions due to local time effects.

Key words. Magnetospheric physics (current systems; planetary magnetospheres; plasma sheet)