Articles | Volume 22, issue 10
https://doi.org/10.5194/angeo-22-3589-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-22-3589-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Characteristic properties of Nu whistlers as inferred from observations and numerical modelling
D. R. Shklyar
IZMIRAN, Troitsk, Moscow Region, 142 190, Russia
J. Chum
Institute of Atmospheric Physics, Acad. Sci. Czech Republic, Boční II, 141 31 Prague 4, Czech Republic
F. Jiříček
IZMIRAN, Troitsk, Moscow Region, 142 190, Russia
Viewed
Total article views: 1,661 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
793 | 816 | 52 | 1,661 | 87 | 73 |
- HTML: 793
- PDF: 816
- XML: 52
- Total: 1,661
- BibTeX: 87
- EndNote: 73
Cited
40 citations as recorded by crossref.
- Chorus source properties that produce time shifts and frequency range differences observed on different Cluster spacecraft J. Chum et al. 10.1029/2006JA012061
- Short‐Fractional Hop Whistler Rate Observed by the Low‐Altitude Satellite DEMETER at the End of the Solar Cycle 23 M. Parrot et al. 10.1029/2018JA026176
- Whistler Mode Waves in the Compressional Boundary of Foreshock Transients X. Shi et al. 10.1029/2019JA027758
- Ionospherically reflected proton whistlers D. Vavilov & D. Shklyar 10.1002/2014JA020510
- On the origin of lower‐ and upper‐frequency cutoffs on wedge‐like spectrograms observed by DEMETER in the midlatitude ionosphere D. Shklyar et al. 10.1029/2009JA014672
- An unusual VLF signature structure recorded by the DEMETER satellite C. Ferencz et al. 10.1029/2009JA014636
- Doppler Shifted Alpha Transmitter Signals in the Conjugate Hemisphere: DEMETER Spacecraft Observations and Raytracing Modeling F. Němec et al. 10.1029/2020JA029017
- Nonlinear Interaction of Landau-Resonance Electrons with the EMIC Wave in a Multicomponent Plasma A. Luzhkovskii 10.1134/S1063780X24601202
- Empirical model of lower band chorus wave distribution in the outer radiation belt O. Agapitov et al. 10.1002/2015JA021829
- On quasi-parallel whistler waves in the solar wind I. Vasko et al. 10.1063/5.0003401
- Statistics of Whistler‐Mode Waves in the Near‐Earth Plasma Sheet L. Gao et al. 10.1029/2022JA030603
- Spatial spreading of magnetospherically reflected chorus elements in the inner magnetosphere H. Breuillard et al. 10.5194/angeo-31-1429-2013
- Ionosphere Feedback to Electron Scattering by Equatorial Whistler Mode Waves A. Artemyev et al. 10.1029/2020JA028373
- Study of the lower hybrid resonance frequency over the regions of gathering earthquakes using DEMETER data D. Vavilov et al. 10.1016/j.jastp.2013.03.019
- Propagation of unducted whistlers from their source lightning: A case study O. Santolík et al. 10.1029/2008JA013776
- Whistler Mode Waves Below Lower Hybrid Resonance Frequency: Generation and Spectral Features D. Shklyar & M. Balikhin 10.1002/2017JA024416
- Role of Ducting in Relativistic Electron Loss by Whistler‐Mode Wave Scattering A. Artemyev et al. 10.1029/2021JA029851
- Whistler Waves Above the Lower Hybrid Frequency in the Ionosphere and Their Counterparts in the Magnetosphere Z. Xia et al. 10.1029/2022GL098294
- Spectral features of lightning‐induced ion cyclotron waves at low latitudes: DEMETER observations and simulation D. Shklyar et al. 10.1029/2012JA018016
- Bootstrap energization of relativistic electrons in magnetized plasmas I. Roth 10.1017/S174392130902969X
- Energy Transfer Between Various Electron Populations Via Resonant Interaction With Whistler Mode Wave A. Luzhkovskiy & D. Shklyar 10.1029/2023JA031962
- Full-wave description of the lower hybrid reflection of whistler waves I. Kuzichev & D. Shklyar 10.1134/S1063780X13090043
- Modeling of the Auroral Hiss Propagation from the Source Region to the Ground O. Lebed’ et al. 10.1134/S0016793219050074
- Observations and modeling of forward and reflected chorus waves captured by THEMIS O. Agapitov et al. 10.5194/angeo-29-541-2011
- Reflection from the ionosphere and exit to the ground of whistler wave packets: A dynamical model D. Shklyar & S. Prokhorenko 10.1016/j.jastp.2020.105222
- Response of propagation of ELF electromagnetic waves through the morning ionosphere to small density variations caused by infrasonic wave V. Mizonova & P. Bespalov 10.1016/j.asr.2023.07.055
- On the Influence of Propagation Properties of Whistler-Mode Waves in the Earth’s Magnetosphere on Their Cyclotron Amplification D. Pasmanik & A. Demekhov 10.1007/s11141-021-10049-z
- Whistler Fan Instability Driven by Strahl Electrons in the Solar Wind I. Vasko et al. 10.3847/2041-8213/ab01bd
- Intense Whistler-mode Waves at Foreshock Transients: Characteristics and Regimes of Wave−Particle Resonant Interaction X. Shi et al. 10.3847/1538-4357/acb543
- Temporal signatures of radiation belt electron precipitation induced by lightning‐generated MR whistler waves: 2. Global signatures J. Bortnik et al. 10.1029/2005JA011398
- Analysis of subprotonospheric whistlers observed by DEMETER: A case study J. Chum et al. 10.1029/2008JA013585
- On Whistler Mode Wave Relation to Electron Field‐Aligned Plateau Populations A. Artemyev & D. Mourenas 10.1029/2019JA027735
- Peculiarities of VLF wave propagation in the Earth's magnetosphere in the presence of artificial large‐scale inhomogeneity D. Pasmanik & A. Demekhov 10.1002/2017JA024118
- A Theory of Interaction Between Relativistic Electrons and Magnetospherically Reflected Whistlers D. Shklyar 10.1029/2020JA028799
- The Influence of Small Variations of Plasma Density on Conditions of Propagation of Electromagnetic Waves of the Whistle Range through the Morning Ionosphere V. Mizonova & P. Bespalov 10.1134/S0010952522700113
- Parametric validations of analytical lifetime estimates for radiation belt electron diffusion by whistler waves A. Artemyev et al. 10.5194/angeo-31-599-2013
- Oblique Whistler-Mode Waves in the Earth’s Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics A. Artemyev et al. 10.1007/s11214-016-0252-5
- The Influence of Small Variations of Plasma Density on Conditions of Propagation of Electromagnetic Waves of the Whistle Range through the Morning Ionosphere V. Mizonova & P. Bespalov 10.31857/S0023420622100077
- Energy transfer from lower energy to higher‐energy electrons mediated by whistler waves in the radiation belts D. Shklyar 10.1002/2016JA023263
- Nonlinear electron acceleration by oblique whistler waves: Landau resonance vs. cyclotron resonance A. Artemyev et al. 10.1063/1.4836595
Latest update: 21 Jan 2025