Articles | Volume 22, issue 4
https://doi.org/10.5194/angeo-22-1395-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-22-1395-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Open solar flux estimates from near-Earth measurements of the interplanetary magnetic field: comparison of the first two perihelion passes of the Ulysses spacecraft
M. Lockwood
Also Visiting Honorary Lecturer, Blackett Laboratory, Imperial College of Science and Technology, London, UK
Also at Department of Physics and Astronomy, University of Southampton, Southampton, Hampshire, UK
Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK
R. B. Forsyth
Blackett Laboratory, Imperial College of Science and Technology, London, SW7 2BZ, UK
A. Balogh
Blackett Laboratory, Imperial College of Science and Technology, London, SW7 2BZ, UK
D. J. McComas
Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX 78228-0510, Texas, USA
Viewed
Total article views: 2,319 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,245 | 1,025 | 49 | 2,319 | 66 | 55 |
- HTML: 1,245
- PDF: 1,025
- XML: 49
- Total: 2,319
- BibTeX: 66
- EndNote: 55
Cited
45 citations as recorded by crossref.
- A mechanism for lagged North Atlantic climate response to solar variability A. Scaife et al. 10.1002/grl.50099
- Estimating total heliospheric magnetic flux from single‐point in situ measurements M. Owens et al. 10.1029/2008JA013677
- Polar plumes’ orientation and the Sun’s global magnetic field J. de Patoul et al. 10.1051/0004-6361/201322414
- Centennial changes in the heliospheric magnetic field and open solar flux: The consensus view from geomagnetic data and cosmogenic isotopes and its implications M. Lockwood & M. Owens 10.1029/2010JA016220
- Climate proxies for recent fjord sediments in the inner Sognefjord region, western Norway M. Paetzel & T. Dale 10.1144/SP344.19
- THE ACCURACY OF USING THEULYSSESRESULT OF THE SPATIAL INVARIANCE OF THE RADIAL HELIOSPHERIC FIELD TO COMPUTE THE OPEN SOLAR FLUX M. Lockwood & M. Owens 10.1088/0004-637X/701/2/964
- Centennial changes in solar activity and the response of galactic cosmic rays A. Rouillard & M. Lockwood 10.1016/j.asr.2007.02.096
- How is open solar magnetic flux lost over the solar cycle? M. Owens et al. 10.1029/2010JA016039
- What causes the flux excess in the heliospheric magnetic field? E. Smith 10.1029/2011JA016521
- The Development of a Space Climatology: 2. The Distribution of Power Input Into the Magnetosphere on a 3‐Hourly Timescale M. Lockwood et al. 10.1029/2018SW002016
- A simulated lagged response of the North Atlantic Oscillation to the solar cycle over the period 1960–2009 M. Andrews et al. 10.1088/1748-9326/10/5/054022
- The Effect of Magnetic Variability on Stellar Angular Momentum Loss. I. The Solar Wind Torque during Sunspot Cycles 23 and 24 A. Finley et al. 10.3847/1538-4357/aad7b6
- Application of historic datasets to understanding open solar flux and the 20th-century grand solar maximum. 1. Geomagnetic, ionospheric, and sunspot observations M. Lockwood et al. 10.3389/fspas.2022.960775
- Centennial changes in the solar wind speed and in the open solar flux A. Rouillard et al. 10.1029/2006JA012130
- EVOLUTION OF CORONAL MASS EJECTION MORPHOLOGY WITH INCREASING HELIOCENTRIC DISTANCE. I. GEOMETRICAL ANALYSIS N. Savani et al. 10.1088/0004-637X/731/2/109
- Direct Detection of Solar Angular Momentum Loss with the Wind Spacecraft A. Finley et al. 10.3847/2041-8213/ab4ff4
- THE RISE AND FALL OF OPEN SOLAR FLUX DURING THE CURRENT GRAND SOLAR MAXIMUM M. Lockwood et al. 10.1088/0004-637X/700/2/937
- Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 4: Near-Earth solar wind speed, IMF, and open solar flux M. Lockwood et al. 10.5194/angeo-32-383-2014
- The Floor in the Solar Wind Magnetic Field Revisited E. Cliver & A. Ling 10.1007/s11207-010-9657-6
- A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS N. Savani et al. 10.1088/0004-637X/759/2/103
- Space climate and space weather over the past 400 years: 1. The power input to the magnetosphere M. Lockwood et al. 10.1051/swsc/2017019
- The Sun's global magnetic field D. Mackay 10.1098/rsta.2011.0536
- Galactic cosmic ray flux decline and periodicities in the interplanetary space during the last 3 centuries revealed by 44Ti in meteorites C. Taricco et al. 10.1029/2005JA011459
- Comment on “The IDV index: Its derivation and use in inferring long‐term variations of the interplanetary magnetic field strength” by Leif Svalgaard and Edward W. Cliver M. Lockwood et al. 10.1029/2006JA011640
- Sunward Strahl: A Method to Unambiguously Determine Open Solar Flux from In Situ Spacecraft Measurements Using Suprathermal Electron Data M. Owens et al. 10.1002/2017JA024631
- Solar Angular Momentum Loss over the Past Several Millennia A. Finley et al. 10.3847/1538-4357/ab3729
- Solar cycle variations of heliospheric magnetic flux X. Zhou & E. Smith 10.1029/2008JA013421
- Reconstruction of Carrington Rotation Means of Open Solar Flux over the Past 154 Years M. Lockwood & M. Owens 10.1007/s11207-024-02268-0
- Evolution of the Sunspot Number and Solar Wind B $B$ Time Series E. Cliver & K. Herbst 10.1007/s11214-018-0487-4
- Coronal mass ejections and magnetic flux buildup in the heliosphere M. Owens & N. Crooker 10.1029/2006JA011641
- Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects M. Lockwood et al. 10.1029/2009JA014450
- IMPACT OF AN L5 MAGNETOGRAPH ON NONPOTENTIAL SOLAR GLOBAL MAGNETIC FIELD MODELING D. Mackay et al. 10.3847/0004-637X/825/2/131
- A homogeneous aa index: 1. Secular variation M. Lockwood et al. 10.1051/swsc/2018038
- Estimating Total Open Heliospheric Magnetic Flux S. Wallace et al. 10.1007/s11207-019-1402-1
- Reconstructing Sunspot Number by Forward-Modelling Open Solar Flux M. Owens et al. 10.1007/s11207-023-02241-3
- Modeling the Sun's open magnetic flux M. Schüssler & I. Baumann 10.1051/0004-6361:20065871
- Comment on “What causes the flux excess in the heliospheric magnetic field?” by E. J. Smith M. Lockwood & M. Owens 10.1002/jgra.50223
- Coronal Hole Detection and Open Magnetic Flux J. Linker et al. 10.3847/1538-4357/ac090a
- MAGNETIC FLUX BALANCE IN THE HELIOSPHERE N. Schwadron et al. 10.1088/2041-8205/722/2/L132
- The interplanetary magnetic field: Radial and latitudinal dependences O. Khabarova 10.1134/S1063772913110024
- Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget M. Owens & N. Crooker 10.1029/2006JA012159
- Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass M. Lockwood et al. 10.1029/2009JA014449
- Role of coronal mass ejections in the heliospheric Hale cycle M. Owens et al. 10.1029/2006GL028795
- The “Floor” in the Interplanetary Magnetic Field: Estimation on the Basis of Relative Duration of ICME Observations in Solar Wind During 1976 – 2000 Y. Yermolaev et al. 10.1007/s11207-009-9438-2
- A PLASMA β TRANSITION WITHIN A PROPAGATING FLUX ROPE N. Savani et al. 10.1088/0004-637X/779/2/142
Latest update: 21 Nov 2024