Articles | Volume 20, issue 3
https://doi.org/10.5194/angeo-20-301-2002
© Author(s) 2002. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/angeo-20-301-2002
© Author(s) 2002. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The magnetopause shape and location: a comparison of the Interball and Geotail observations with models
J. Šafránková
Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, 180 00 Praha 8, Czech Republic
Z. Nĕmeček
Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, 180 00 Praha 8, Czech Republic
Š. Dušík
Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, 180 00 Praha 8, Czech Republic
L. Přech
Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, 180 00 Praha 8, Czech Republic
D. G. Sibeck
Applied Physics Laboratory, JHU, Laurel, Maryland, USA
N. N. Borodkova
Space Research Institute, Moscow, Russia
Viewed
Total article views: 1,566 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
791 | 703 | 72 | 1,566 | 79 | 64 |
- HTML: 791
- PDF: 703
- XML: 72
- Total: 1,566
- BibTeX: 79
- EndNote: 64
Cited
46 citations as recorded by crossref.
- Interplanetary Magnetic Field By Controls the Magnetopause Location M. Aghabozorgi Nafchi et al. 10.1029/2023JA031303
- Bow shock's geometry at the magnetospheric flanks J. Merka & A. Szabo 10.1029/2004JA010567
- Why does the subsolar magnetopause move sunward for radial interplanetary magnetic field? A. Samsonov et al. 10.1029/2011JA017429
- Nowcasting and forecasting of the magnetopause and bow shock—A status update S. Petrinec et al. 10.1002/2016SW001565
- Anisotropy of Magnetic Field and Velocity Fluctuations in the Solar Wind J. Šafránková et al. 10.3847/1538-4357/abf6c9
- Solar cycle variations of magnetopause locations Z. Němeček et al. 10.1016/j.asr.2015.10.012
- Magnetotail boundary crossings at lunar distances: ARTEMIS observations I. Gencturk Akay et al. 10.1016/j.jastp.2018.11.002
- Statistical study of the magnetopause motion: First results from THEMIS F. Plaschke et al. 10.1029/2008JA013423
- Comparison of a new model with previous models for the low-latitude magnetopause size and shape R. Lin et al. 10.1007/s11434-009-0533-4
- Massive Multi‐Mission Statistical Study and Analytical Modeling of the Earth's Magnetopause: 2. Shape and Location G. Nguyen et al. 10.1029/2021JA029774
- The dayside magnetopause location during radial interplanetary magnetic field periods: Cluster observation and model comparison T. Huang et al. 10.5194/angeo-33-437-2015
- Analysis of temperature versus density plots and their relation to the LLBL formation under southward and northward IMF orientations Z. Němeček et al. 10.1002/2014JA020308
- A new approach to magnetopause and bow shock modeling based on automated region identification K. Jelínek et al. 10.1029/2011JA017252
- Dipole tilt controls bow shock location and flaring angle J. Lu et al. 10.1007/s11430-015-0268-8
- Kinetic‐Scale Ion Flux Fluctuations Behind the Quasi‐Parallel and Quasi‐Perpendicular Bow Shock L. Rakhmanova et al. 10.1029/2018JA025179
- The shape and location of the high-latitude magnetopause J. Šafránková et al. 10.1016/j.asr.2004.05.009
- Massive Multi‐Mission Statistical Study and Analytical Modeling of the Earth's Magnetopause: 1. A Gradient Boosting Based Automatic Detection of Near‐Earth Regions G. Nguyen et al. 10.1029/2021JA029773
- The Cluster spacecrafts' view of the motion of the high-latitude magnetopause N. Grimmich et al. 10.5194/angeo-42-371-2024
- Why does the total pressure on the subsolar magnetopause differ from the solar wind dynamic pressure? A. Samsonov et al. 10.1134/S0010952513010073
- Spatial profiles of magnetosheath parameters under different IMF orientations: THEMIS observations G. Pi et al. 10.3389/fspas.2024.1401078
- Shape of the equatorial magnetopause affected by the radial interplanetary magnetic field K. Grygorov et al. 10.1016/j.pss.2017.09.011
- Massive Multi‐Mission Statistical Study and Analytical Modeling of the Earth's Magnetopause: 3. An Asymmetric Non Indented Magnetopause Analytical Model G. Nguyen et al. 10.1029/2021JA030112
- Relationship between high-energy particles and ion flux in the magnetosheath M. Hayosh et al. 10.1016/j.pss.2004.09.034
- A three‐dimensional asymmetric magnetopause model R. Lin et al. 10.1029/2009JA014235
- Eastern Approaches: Interball in the International Solar‐Terrestrial Program D. Sibeck 10.1029/2022CN000194
- IMF cone angle control of the magnetopause location: Statistical study Š. Dušík et al. 10.1029/2010GL044965
- Extremely Distant Magnetopause Locations Caused by Magnetosheath Jets Z. Němeček et al. 10.1029/2023GL106131
- Influence of the tilt angle on the bow shock shape and location K. Jelínek et al. 10.1029/2007JA012813
- Solar Wind—Magnetosphere Coupling During Radial Interplanetary Magnetic Field Conditions: Simultaneous Multi‐Point Observations S. Toledo‐Redondo et al. 10.1029/2021JA029506
- Advanced Methods for Analyzing in-Situ Observations of Magnetic Reconnection H. Hasegawa et al. 10.1007/s11214-024-01095-w
- Global Three‐Dimensional Draping of Magnetic Field Lines in Earth’s Magnetosheath From In‐Situ Spacecraft Measurements B. Michotte de Welle et al. 10.1029/2022JA030996
- Earth's bow shock and magnetopause in the case of a field‐aligned upstream flow: Observation and model comparison J. Merka et al. 10.1029/2002JA009697
- Dust dynamic pressure and magnetopause displacement: reasons for non-detection I. Mann & M. Hamrin 10.5194/angeo-31-39-2013
- Correlation level between solar wind and magnetosheath plasma and magnetic field parameters L. Rakhmanova et al. 10.1016/j.asr.2015.09.036
- The Earth’s Magnetosphere: A Systems Science Overview and Assessment J. Borovsky & J. Valdivia 10.1007/s10712-018-9487-x
- Cluster energetic electron survey of the high-altitude cusp and adjacent regions B. Walsh & T. Fritz 10.1029/2011JA016828
- Interball contribution to the high-altitude cusp observations Z. Němeček et al. 10.1016/j.pss.2007.05.021
- Global MHD simulation of flux transfer events at the high‐latitude magnetopause observed by the Cluster spacecraft and the SuperDARN radar system P. Daum et al. 10.1029/2007JA012749
- IMF control of the high-altitude cusp dynamics Z. Němeček & J. Šafránková 10.1016/j.asr.2007.07.038
- Magnetopause location modeling using machine learning: inaccuracy due to solar wind parameter propagation M. Aghabozorgi Nafchi et al. 10.3389/fspas.2024.1390427
- Configuration of the outer cusp after an IMF rotation J. Šimůnek et al. 10.1016/S0273-1177(02)00953-5
- Analytic Modeling of Magnetic Field in the Magnetosheath and Outer Magnetosphere E. Romashets & M. Vandas 10.1029/2018JA026006
- The location of the Earth's magnetopause: A comparison of modeled position and in situ Cluster data N. Case & J. Wild 10.1002/jgra.50572
- Variations of the magnetopause position versus the level of geomagnetic activity (according to data of the INTERBALL-1 Satellite for 1995–1997) N. Nikolaeva et al. 10.1134/S0010952506050017
- Massive Multi‐Mission Statistical Study and Analytical Modeling of the Earth's Magnetopause: 4. On the Near‐Cusp Magnetopause Indentation G. Nguyen et al. 10.1029/2021JA029776
- Study of Extreme Magnetopause Distortions Under Varying Solar Wind Conditions N. Grimmich et al. 10.1029/2023JA031603
Latest update: 23 Nov 2024