Articles | Volume 19, issue 2
https://doi.org/10.5194/angeo-19-219-2001
https://doi.org/10.5194/angeo-19-219-2001
28 Feb 2001
 | 28 Feb 2001

The Mg II index for upper atmosphere modelling

G. Thuillier and S. Bruinsma

Abstract. The solar radio flux at 10.7 cm has been used in upper atmosphere density modelling because of its correlation with EUV radiation and its long and complete observational record. A proxy, the Mg II index, for the solar chromospheric activity has been derived by Heath and Schlesinger (1986) from Nimbus-7 data. This index allows one to describe the changes occurring in solar-activity in the UV Sun spectral irradiance. The use of this new proxy in upper atmosphere density modelling will be considered. First, this is supported by the 99.9% correlation between the solar radio flux (F10.7) and the Mg II index over a period of 19 years with, however, large differences on time scales of days to months. Secondly, correlation between EUV emissions and the Mg II index has been shown recently, suggesting that this last index may also be used to describe the EUV variations. Using the same density dataset, a model was first run with the F10.7 index as a solar forcing function and second, with the Mg II index. Comparison of their respective predictions to partial density data showed a 3–8% higher precision when the modelling uses the Mg II index rather than F10.7. An external validation, by means of orbit computation, resulted in a 20–40% smaller RMS of the tracking residuals. A density dataset spanning an entire solar cycle, together with Mg II data, is required to construct an accurate, unbiased as possible density model.

Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; thermosphere – composition and chemistry) – History of geophysics (atmospheric sciences)