The greatest soda-water lake in the world and how it is influenced by climatic change
Abstract. Global warming resulting from increasing greenhouse gases in the atmosphere and the local climate changes that follow affect local hydrospheric and biospheric environments. These include lakes that serve surrounding populations as a fresh water resource or provide regional navigation. Although there may well be steady water-quality alterations in the lakes with time, many of these are very much climate-change dependent. During cool and wet periods, there may be water-level rises that may cause economic losses to agriculture and human activities along the lake shores. Such rises become nuisances especially in the case of shoreline settlements and low-lying agricultural land. Lake Van, in eastern Turkey currently faces such problems due to water-level rises. The lake is unique for at least two reasons. First, it is a closed basin with no natural or artificial outlet and second, its waters contain high concentrations of soda which prevent the use of its water as a drinking or agricultural water source. Consequently, the water level fluctuations are entirely dependent on the natural variability of the hydrological cycle and any climatic change affects the drainage basin. In the past, the lake-level fluctuations appear to have been rather systematic and unrepresentable by mathematical equations. Herein, monthly polygonal climate diagrams are constructed to show the relation between lake level and some meteorological variables, as indications of significant and possible climatic changes. This procedure is applied to Lake Van, eastern Turkey, and relevant interpretations are presented.