Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 14, issue 12
Ann. Geophys., 14, 1462–1472, 1996
https://doi.org/10.1007/s00585-996-1462-z
© European Geosciences Union 1996

Special issue: VIIIe EISCAT

Ann. Geophys., 14, 1462–1472, 1996
https://doi.org/10.1007/s00585-996-1462-z
© European Geosciences Union 1996

  31 Dec 1996

31 Dec 1996

Enhanced incoherent scatter plasma lines

H. Nilsson1, S. Kirkwood1, J. Lilensten2, and M. Galand2 H. Nilsson et al.
  • 1Swedish Institute of Space Physics, Box 812, S-981 28 Kiruna, Sweden
  • 2Centre d'Etudes des Phenomènes Aléatoires et Géophysiques - ENSIEG, St Martin d'Heres Cedex, France

Abstract. Detailed model calculations of auroral secondary and photoelectron distributions for varying conditions have been used to calculate the theoretical enhancement of incoherent scatter plasma lines. These calculations are compared with EISCAT UHF radar measurements of enhanced plasma lines from both the E and F regions, and published EISCAT VHF radar measurements. The agreement between the calculated and observed plasma line enhancements is good. The enhancement from the superthermal distribution can explain even the very strong enhancements observed in the auroral E region during aurora, as previously shown by Kirkwood et al. The model calculations are used to predict the range of conditions when enhanced plasma lines will be seen with the existing high-latitude incoherent scatter radars, including the new EISCAT Svalbard radar. It is found that the detailed structure, i.e. the gradients in the suprathermal distribution, are most important for the plasma line enhancement. The level of superthermal flux affects the enhancement only in the region of low phase energy where the number of thermal electrons is comparable to the number of suprathermal electrons and in the region of high phase energy where the suprathermal fluxes fall to such low levels that their effect becomes small compared to the collision term. To facilitate the use of the predictions for the different radars, the expected signal- to-noise ratios (SNRs) for typical plasma line enhancements have been calculated. It is found that the high-frequency radars (Søndre Strømfjord, EISCAT UHF) should observe the highest SNR, but only for rather high plasma frequencies. The VHF radars (EISCAT VHF and Svalbard) will detect enhanced plasma lines over a wider range of frequencies, but with lower SNR.

Publications Copernicus
Special issue
Download
Citation