Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 32, issue 6
Ann. Geophys., 32, 581–588, 2014
https://doi.org/10.5194/angeo-32-581-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 32, 581–588, 2014
https://doi.org/10.5194/angeo-32-581-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Regular paper 02 Jun 2014

Regular paper | 02 Jun 2014

Criterion for analyzing experimental data on eddy diffusion coefficients

M. N. Vlasov and M. C. Kelley M. N. Vlasov and M. C. Kelley
  • School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA

Abstract. Problems exist in estimating the eddy heat transport coefficient, Keh, from experimental data. These problems are due to uncertainty in determining the turbulent energy dissipation rate and to the uncertainty of Keh dependence on the energy dissipation rate. In this paper, a new criterion for estimating the eddy heat transport coefficient is suggested. This criterion is based on the effect of eddy turbulence on the energy budget of the upper mesosphere and lower thermosphere. The calculations show high cooling around and above the Keh peak for Keh values inferred from experimental data. The cooling rates are much higher than cooling rates corresponding to the temperature given by the MSIS-E-90 model or to temperatures measured during the experiments. The main contribution to high cooling rates is due to the term with eddy heat conduction, which strongly depends on the Keh gradient. According to our results, the heating/cooling values below the Keh peak altitude correspond to the temperature given by the MSIS-E-90 model, but at the peak and above, the cooling rates are larger by a factor of 2–3 than the rates corresponding to the temperatures. This means that the Keh values in the peak and above may be overestimated. Application of this criterion to the Turbulent Oxygen Mixing Experiment (TOMEX) data shows that eddy diffusions inferred from observing chemical tracers in TOMEX are strongly overestimated.

Publications Copernicus
Download
Citation