Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 31, issue 10
Ann. Geophys., 31, 1653–1671, 2013
https://doi.org/10.5194/angeo-31-1653-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 31, 1653–1671, 2013
https://doi.org/10.5194/angeo-31-1653-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Regular paper 07 Oct 2013

Regular paper | 07 Oct 2013

Empirical regional models for the short-term forecast of M3000F2 during not quiet geomagnetic conditions over Europe

M. Pietrella M. Pietrella
  • Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata 605, 00143 Rome, Italy

Abstract. Twelve empirical local models have been developed for the long-term prediction of the ionospheric characteristic M3000F2, and then used as starting point for the development of a short-term forecasting empirical regional model of M3000F2 under not quiet geomagnetic conditions. Under the assumption that the monthly median measurements of M3000F2 are linearly correlated to the solar activity, a set of regression coefficients were calculated over 12 months and 24 h for each of 12 ionospheric observatories located in the European area, and then used for the long-term prediction of M3000F2 at each station under consideration.

Based on the 12 long-term prediction empirical local models of M3000F2, an empirical regional model for the prediction of the monthly median field of M3000F2 over Europe (indicated as RM_M3000F2) was developed.

Thanks to the IFELM_foF2 models, which are able to provide short-term forecasts of the critical frequency of the F2 layer (foF2STF) up to three hours in advance, it was possible to considerer the Brudley–Dudeney algorithm as a function of foF2STF to correct RM_M3000F2 and thus obtain an empirical regional model for the short-term forecasting of M3000F2 (indicated as RM_M3000F2_BD) up to three hours in advance under not quiet geomagnetic conditions.

From the long-term predictions of M3000F2 provided by the IRI model, an empirical regional model for the forecast of the monthly median field of M3000F2 over Europe (indicated as IRI_RM_M3000F2) was derived.

IRI_RM_M3000F2 predictions were modified with the Bradley–Dudeney correction factor, and another empirical regional model for the short-term forecasting of M3000F2 (indicated as IRI_RM_M3000F2_BD) up to three hours ahead under not quiet geomagnetic conditions was obtained.

The main results achieved comparing the performance of RM_M3000F2, RM_M3000F2_BD, IRI_RM_M3000F2, and IRI_RM_M3000F2_BD are (1) in the case of moderate geomagnetic activity, the Bradley–Dudeney correction factor does not improve significantly the predictions; (2) under disturbed geomagnetic conditions, the Bradley–Dudeney formula improves the predictions of RM_M3000F2 in the entire European area; (3) in the case of very disturbed geomagnetic conditions, the Bradley–Dudeney algorithm is very effective in improving the performance of IRI_RM_M3000F2; (4) under moderate geomagnetic conditions, the long-term prediction maps of M3000F2 generated by RM_M3000F2 can be considered as short-term forecasting maps providing very satisfactory results because quiet geomagnetic conditions are not so diverse from moderate geomagnetic conditions; (5) the forecasting maps originated by RM_M3000F2, RM_M3000F2_BD, and IRI_RM_M3000F2_BD show some regions where the forecasts are not satisfactory, but also wide sectors where the M3000F2 forecasts quite faithfully match the M3000F2 observations, and therefore RM_M3000F2, RM_M3000F2_BD, and IRI_RM_M3000F2_BD could be exploited to produce short-term forecasting maps of M3000F2 over Europe up to 3 h in advance.

Publications Copernicus
Download
Citation