the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Global climatological variability of quasi-two-day waves revealed by TIMED/SABER observations
Y. Y. Huang
S. D. Zhang
C. M. Huang
K. M. Huang
Y. Gong
Abstract. This paper presents characteristics of quasi-two-day waves (QTDWs) in the mesosphere and lower thermosphere (MLT) between 52° S and 52° N from 2002 to 2011 using TIMED/SABER temperature data. Spectral analysis suggests that dominant QTDW components at mid-high latitudes of the Southern Hemisphere (SH) and the Northern Hemisphere (NH) are (2.13, W3) and (2.04, W4), respectively. The most remarkable QTDW is (2.13, W3), which happened in the southern summer of 2002–2003 at 32° S from 60 to 90 km in altitude. Its downward phase propagation indicates upward propagation of the wave energy and a potential source region below 60 km. Analysis of horizontal wind fields in the same period shows the westward and southward propagation of (2.13, W3) and a possible reflection region above 90 km. Fundamental parameters of QTDWs present significant interhemispheric differences and interannual variations in statistical analysis. Amplitudes in the SH are twice larger than that in the NH, and vertical wavelengths are a little longer in the SH. QTDWs may endure stronger dissipation in southern summer because of shorter durations of their attenuation stages. Impact of the equatorial quasi-biennial-oscillation (QBO) on QTDWs can extend to mid-high latitudes of both hemispheres. It seems easier for QTDWs to propagate upward in the equatorial QBO's westerly phase in the lower stratosphere and easterly phase in the middle stratosphere. Interannual variations of QTDW strength may be influenced by solar activity as well. Strengths of QTDWs appear to be stronger (weaker) in the solar maximum (minimum).
- Article
(1540 KB) - Metadata XML
- BibTeX
- EndNote