Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 29, issue 1
Ann. Geophys., 29, 147–156, 2011
https://doi.org/10.5194/angeo-29-147-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 29, 147–156, 2011
https://doi.org/10.5194/angeo-29-147-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

  13 Jan 2011

13 Jan 2011

The structure and dynamics of a large-scale plasmoid generated by fast reconnection in the geomagnetic tail

M. Ugai M. Ugai
  • Research Center for Space and Cosmic Evolution, Ehime University, Matsuyama 790-8577, Japan

Abstract. As a sequence of Ugai (2010b), the present paper studies in detail the structure and dynamics of large-scale (principal) plasmoid, generated by the fast reconnection evolution in a sheared current sheet with no initial northward field component. The overall plasmoid domain is divided into the plasmoid reconnection region P and the plasmoid core region C. In the region P, the magnetized plasma with reconnected field lines are accumulated, whereas in the region C, the plasma, which was intially embedded in the current sheet and has been ejected away by the reconnection jet, is compressed and accumulated. In the presence of the sheared magnetic field in the east-west direction in the current sheet, the upper and lower parts of the reconnection region P are inversely shifted in the east-west directions. Accordingly, the plasmoid core region C with the accumulated sheared field lines is bent in the north-south direction just ahead of the plasmoid center x=XC, causing the magnetic field component in the north-south direction, whose sign is always opposite to that of the reconnected field lines. Therefore, independently of the sign of the initial sheared field, the magnetic field component Bz in the north-south direction has the definite bipolar profile around XC along the x-axis. At x=XC, the sheared field component has the peak value, and as the sheared fields accumulated in the region C become larger, the bipolar field profile becomes more distinct.

Publications Copernicus
Download
Citation