Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 28, issue 1
Ann. Geophys., 28, 89–101, 2010
https://doi.org/10.5194/angeo-28-89-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 28, 89–101, 2010
https://doi.org/10.5194/angeo-28-89-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  18 Jan 2010

18 Jan 2010

Study of Atmospheric Forcing and Responses (SAFAR) campaign: overview

A. Jayaraman, M. Venkat Ratnam, A. K. Patra, T. Narayana Rao, S. Sridharan, M. Rajeevan, H. Gadhavi, A. P. Kesarkar, P. Srinivasulu, and K. Raghunath A. Jayaraman et al.
  • National Atmospheric Research Laboratory, Gadanki 517112, India

Abstract. Study of Atmospheric Forcing and Responses (SAFAR) is a five year (2009–2014) research programme specifically to address the responses of the earth's atmosphere to both natural and anthropogenic forcings using a host of collocated instruments operational at the National Atmospheric Research Laboratory, Gadanki (13.5° N, 79.2° E), India from a unified viewpoint of studying the vertical coupling between the forcings and responses from surface layer to the ionosphere. As a prelude to the main program a pilot campaign was conducted at Gadanki during May–November 2008 using collocated observations from the MST radar, Rayleigh lidar, GPS balloonsonde, and instruments measuring aerosol, radiation and precipitation, and supporting satellite data. We show the importance of the large radiative heating caused by absorption of solar radiation by soot particles in the lower atmosphere, the observed high vertical winds in the convective updrafts extending up to tropopause, and the difficulty in simulating the same with existing models, the upward traveling waves in the middle atmosphere coupling the lower atmosphere with the upper atmosphere, their manifestation in the mesospheric temperature structure and inversion layers, the mesopause height extending up to 100 km, and the electro-dynamical coupling between mesosphere and the ionosphere which causes irregularities in the ionospheric F-region. The purpose of this communication is not only to share the knowledge that we gained from the SAFAR pilot campaign, but also to inform the international atmospheric science community about the SAFAR program as well as to extend our invitation to join in our journey.

Publications Copernicus
Download
Citation