Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 28, issue 1
Ann. Geophys., 28, 47–59, 2010
https://doi.org/10.5194/angeo-28-47-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 28, 47–59, 2010
https://doi.org/10.5194/angeo-28-47-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

ANGEO Communicates 13 Jan 2010

ANGEO Communicates | 13 Jan 2010

Coherence between radar observations of magnetospheric field line resonances and discrete oscillations in the solar wind

J. A. E. Stephenson and A. D. M. Walker J. A. E. Stephenson and A. D. M. Walker
  • School of Physics, University of KwaZulu-Natal, Private Bag x54001, Durban, 4000, South Africa

Abstract. Field line resonances have been observed for decades by ground-based and in situ instruments. The driving mechanism(s) are still unclear, although previous work has provided strong grounds that coherent waves in the solar wind may be a source. Here we present further evidence, with the use of multitaper analysis, a sophisticated spectrum estimation technique. A set of windows (dpss tapers) is chosen with characteristics that best suit the width of the narrowband peaks to be identified. The orthogonality of the windows allows for a confidence level (of say 95%) against a null hypothesis of a noisy spectrum, so that significant peaks can be identified. Employing multitaper analysis we can determine the phase and amplitude coherence at the sampling rate of the data sets and, over their entire duration. These characteristics make this technique superior to single windowing or wavelet analysis. A high degree of phase and amplitude (greater then 95%) coherence is demonstrated between a 2.1 mHz field line resonance observed by the SHARE radar at Sanae, Antarctica and the solar wind oscillation detected by WIND and ACE satellites.

Publications Copernicus
Download
Citation