Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 28, issue 2
Ann. Geophys., 28, 439–448, 2010
https://doi.org/10.5194/angeo-28-439-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 28, 439–448, 2010
https://doi.org/10.5194/angeo-28-439-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  08 Feb 2010

08 Feb 2010

Statistical study on the occurrence of ASAID electric fields

S. Liléo, T. Karlsson, and G. T. Marklund S. Liléo et al.
  • Space and Plasma Physics, School of Electrical Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden

Abstract. The first statistical results on the occurrence of abnormal subauroral ion drifts (ASAID) are presented based on electric and magnetic field measurements from the low-altitude Astrid-2 satellite. ASAID are narrow regions of rapid eastward ion drifts observed in the subauroral ionosphere. They correspond to equatorward-directed electric fields with peak amplitudes seen to vary between 45 mV/m and 185 mV/m, and with latitudinal extensions between 0.2° and 1.2° Corrected Geomagnetic Latitude (CGLat), reaching in some cases up to 3.0° CGLat.

Opposite to subauroral ion drifts (SAID) that are known to be substorm-related, ASAID are seen to occur predominantly during extended periods of low substorm activity. Our results show that ASAID are located in the vicinity of the equatorward edge of the auroral oval, mainly in the postmidnight sector between 23:00 and 03:00 magnetic local time. They are associated with a local current system with the same scale-size as the corresponding ASAID, composed by a region of downward field-aligned currents (FACs) flowing in the ASAID poleward side, and a region of upward flowing FACs in the equatorward side. The FACs have densities between 0.5 and 2.0 μA/m2. The data suggest that ASAID do not contribute significantly to the reduction of the ionospheric conductivity. ASAID are seen to have life times of at least 3.5 h.

A discussion on possible mechanisms for the generation of ASAID is presented. We speculate that the proximity of the electron to the ion plasma sheet inner boundaries and of the plasmapause to the ring current outer edge, during extended quiet times, is an important key for the understanding of the generation of ASAID electric fields.

Publications Copernicus
Download
Citation