Articles | Volume 27, issue 1
https://doi.org/10.5194/angeo-27-93-2009
https://doi.org/10.5194/angeo-27-93-2009
06 Jan 2009
 | 06 Jan 2009

Electrojet control of ambient ionization near the crest of the equatorial anomaly in the Indian zone

S. K. Chakraborty and R. Hajra

Abstract. A long-term (1978–1990) database of total electron content (TEC) from a location (Calcutta: 22.58° N, 88.38° E geographic, dip: 32° N) near the northern crest of the equatorial ionization anomaly has extensively been studied to characterize the contribution of fountain effect in the maintenance of ambient ionization. The equatorial electrojet (EEJ) data obtained from ground magnetometer recording are used to assess the contribution of equatorial fountain. Analysis made with instantaneous values, day's maximum values and time-integrated values of EEJ strength exhibit more or less similar features. When instantaneous values of EEJ are considered TEC variations exhibit two maxima in correlation, one around 10:00–12:00 IST and the other around 18:00–20:00 IST. The later maximum in correlation coefficient is conspicuously absent when integrated values of EEJ are considered. An impulse-like feature is reflected in the diurnal TEC variation during the time intervals (09:00–10:00 IST) and (18:00–19:00 IST). The statistical analysis reveals greater correspondence with high level of significance between diurnal TEC and EEJ in the descending epoch of solar cycle than in the ascending one. On the seasonal basis, TEC in the summer solstitial months are observed to be more sensitive to the changes in EEJ strength than in the equinoctial and winter solstitial months. Combining the effects of solar flux, season, local time and EEJ an empirical formula for monthly mean diurnal TEC has been developed and validated using observed TEC data. An estimation of the relative contributions of the several terms appearing in the formula reveals much more solar flux contribution (~50–70%) in the maintenance of ambient ionization around the present location than the EEJ effects (maximum~20%).

Download