Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 27, issue 10
Ann. Geophys., 27, 3933–3940, 2009
https://doi.org/10.5194/angeo-27-3933-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Three eyes on the Sun – multi-spacecraft studies of...

Ann. Geophys., 27, 3933–3940, 2009
https://doi.org/10.5194/angeo-27-3933-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  16 Oct 2009

16 Oct 2009

Fibre structure of decametric type II radio bursts as a manifestation of emission propagation effects in a disturbed near-solar plasma

A. N. Afanasiev A. N. Afanasiev
  • ESTEC/ESA Noordwijk, The Netherlands
  • Institute of Solar-Terrestrial Physics, Irkutsk, Russia

Abstract. This paper addresses the fine structure of solar decametric type II radio bursts in the form of drifting narrowband fibres on the dynamic spectrum. Observations show that this structure appears in those events where there is a coronal mass ejection (CME) traveling in the near-solar space ahead of the shock wave responsible for the radio burst. The diversity in observed morphology of fibres and values of their parameters implies that the fibres may be caused by different formation mechanisms. The burst emission propagates through extremely inhomogeneous plasma of the CME, so one possible mechanism can be related to radio propagation effects. I suggest that the fibres in some events represent traces of radio emission caustics, which are formed due to regular refraction of radio waves on the large-scale inhomogeneous structure of the CME front. To support this hypothesis, I have modeled the propagation of radio waves through inhomogeneous plasma of the CME, taking into consideration the presence of electron density fluctuations in it. The calculations, which are based on the Monte Carlo technique, indicate that, in particular, the emission of the fibres should be harmonic. Moreover, the mechanism under consideration suggests that in solar observations from two different points in space, the observed sets of fibres can be shifted in frequency with respect to one another or can have a different structure. This potentially can be used for identifying fibres caused by the propagation effects.

Publications Copernicus
Download
Citation