Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 27, issue 10
Ann. Geophys., 27, 3805–3809, 2009
https://doi.org/10.5194/angeo-27-3805-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Three eyes on the Sun – multi-spacecraft studies of...

Ann. Geophys., 27, 3805–3809, 2009
https://doi.org/10.5194/angeo-27-3805-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  07 Oct 2009

07 Oct 2009

In situ observations from STEREO/PLASTIC: a test for L5 space weather monitors

K. D. C. Simunac1, L. M. Kistler1,2, A. B. Galvin1,2, M. A. Popecki1, and C. J. Farrugia1 K. D. C. Simunac et al.
  • 1University of New Hampshire, Space Science Center, Durham, NH 03824, USA
  • 2University of New Hampshire, Department of Physics, Durham, NH 03824, USA

Abstract. Stream interaction regions (SIRs) that corotate with the Sun (corotating interaction regions, or CIRs) are known to cause recurrent geomagnetic storms. The Earth's L5 Lagrange point, separated from the Earth by 60 degrees in heliographic longitude, is a logical location for a solar wind monitor – nearly all SIRs/CIRs will be observed at L5 several days prior to their arrival at Earth. Because the Sun's heliographic equator is tilted about 7 degrees with respect to the ecliptic plane, the separation in heliographic latitude between L5 and Earth can be more than 5 degrees. In July 2008, during the period of minimal solar activity at the end of solar cycle 23, the two STEREO observatories were separated by about 60 degrees in longitude and more than 4 degrees in heliographic latitude. This time period affords a timely test for the practical application of a solar wind monitor at L5. We compare in situ observations from PLASTIC/AHEAD and PLASTIC/BEHIND, and report on how well the BEHIND data can be used as a forecasting tool for in situ conditions at the AHEAD spacecraft with the assumptions of ideal corotation and minimal source evolution. Preliminary results show the bulk proton parameters (density and bulk speed) are not in quantitative agreement from one observatory to the next, but the qualitative profiles are similar.

Publications Copernicus
Download
Citation